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Summary 

Medical knowledge is commonly described by natural language. Since 2001, a complex network 

analysis has been applied to natural language. This analysis found that the language network has 

small-world and scale-free properties. Here, we applied this natural language analysis to medical 

knowledge and found similarities between the structure of medical knowledge and that of clinical 

practice. 

We analyzed “Harrison's Principles of Internal Medicine, 15th Edition”, which is a major 

textbook in internal medicine. To determine the structure of medical knowledge rather than 

language, we confined the subjects of study only to medical terms. We then constructed a medical 

knowledge network (MKN) as follows. First, we defined medical terms as the nodes of the network. 

Then, we defined edges that mutually connect a pair of terms in one sentence. 

We calculated the average path length and the average clustering coefficient of the MKN. The 

average path length was 4.317, and the average clustering coefficient was 0.86, the implication 

being that the MKN had nearly the same average path length and a far larger average clustering 

coefficient compared with the corresponding random graph. These findings suggest that the MKN 

has the small-world property.  

We also found that the degree distribution of the MKN exhibited a power law with a fast 

decaying tail. This finding indicates that the MKN is a truncated scale-free network. The exponent 

was 2.045, which is consistent with many other complex networks.  

We also investigated the hierarchical structure of the MKN. A network model that produces a 

network with a hierarchical structure was recently proposed. According to this model, a network 

having the hierarchical structure has the following two features: the average clustering coefficient 

is independent of the size of the network, and the average of the clustering coefficients of nodes 

with k edges follows the scaling law C(k) ~ k
-1

. Our analysis of the MKN determined that it has 

these two features. 

As described above, the MKN displays small-world, scale-free, and hierarchical properties. The 
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small-world property may help a clinician make the most appropriate diagnosis. In contrast, 

scale-free and hierarchical properties are related to the mechanism generating the MKN. The MKN 

would develop and evolve under the following two principles: preferential attachment and 

preservation of the preexisting hierarchical structure. These two principles may give the MKN its 

precise structure.  

We next considered whether clinical practice has properties similar to the MKN. To answer this 

question, we applied network analysis to a database of “disease” in a hospital information system, 

which should reflect the clinical behavior of doctors. This database record contained several items 

in addition to “diagnosis”, such as “patient ID”, “department code”, and “doctor ID”. Therefore, by 

assigning these items to nodes and mutually connecting all nodes in each record by edges, we 

constructed the diagnosis database network (DDN). We then applied network analysis to the DDN, 

and we found that the DDN also has small-world, scale-free, and hierarchical features. 

Moreover, we found that both the diagnosis frequency distribution in the hospital and the 

diagnosis degree distribution of the medical knowledge network obey a similar power law. It used 

to be thought that diagnosis frequency is an objective index existing in the world; however, given 

the similarity between the diagnosis frequency of the hospital and the diagnosis degree of the MKN, 

it could be that diagnosis frequency is influenced by medical knowledge. Medical knowledge 

influences clinical practice, and this practice influences the frequency of diagnosis. Because doctors 

diagnose through clinical practice, clinical practice is thought to be the observation of disease. 

Therefore, the fact that clinical practice influences diagnosis frequency implies that diagnosis 

frequency is not an objective index but, to a certain degree, a subjective index, the value of which 

varies somewhat with the observation of disease. 

These findings also have several mathematical implications:  

1. The network derived from medical knowledge (MKN) cannot be expressed by 

Erdős-Rényi random graphs. 
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2. We require the concept of a complex network to investigate this network. 

3. To express this network, we require a new mathematical model.  

We consider that medical service is a complex system composed of multiple interconnected 

elements. Examples of these elements are patients, medical staff (e.g., doctors), medical knowledge, 

and the results of clinical practice (medical results). This study shows that we can mathematically 

express medical knowledge (MKN) and medical results (DDN) by constructing networks. 

Mathematically expressing medical knowledge and medical results leads to the possibility of 

mathematically analyzing the complex system of medical service. These mathematical analyses can 

be called “medical complex systemology”. 

 

Keywords: small world; scale-free; complex network; natural language; medical knowledge 

  



4 

 

CONTENTS 

Summary .......................................................................................................................................... 1 

1. Introduction .................................................................................................................................. 5 

2. Review of network theory and complex network ........................................................................... 7 

2.1 Graph (Network) ..................................................................................................................... 7 

2.2 Indexes characterizing graphs ................................................................................................ 11 

2.3 Random graph model ............................................................................................................ 13 

2.4 Small-world .......................................................................................................................... 16 

2.5 Scale-free networks ............................................................................................................... 18 

2.6 Truncation of the power law .................................................................................................. 20 

2.7 Scale-free and small-world properties .................................................................................... 22 

2.8 Hierarchical structure ............................................................................................................ 23 

2.9 Complex network .................................................................................................................. 24 

3. Background of the study.............................................................................................................. 27 

4. Methods ...................................................................................................................................... 32 

4.1 Construction of the medical knowledge network (MKN) ....................................................... 32 

4.2 Construction of the diagnosis database network ..................................................................... 32 

5. Numerical analysis and conclusions ............................................................................................ 35 

6. Discussion ................................................................................................................................... 41 

7. Future research directions............................................................................................................ 43 

Acknowledgements ......................................................................................................................... 46 

References ...................................................................................................................................... 47 

Appendix 1 Three types of plot .................................................................................................... 52 

Appendix 2 Estimating the power exponent by regression analysis............................................... 55 

Appendix 3 Maximum likelihood estimate of the power exponent .............................................. 57 

 

 

  



   

5 

 

1. Introduction
1
 

Medical knowledge is extremely complicated. The number of diagnoses alone amounts to tens of 

thousands. Other than diagnoses, an enormous quantity of knowledge is involved, such as 

symptoms, results of clinical tests, pathological knowledge, and anatomical knowledge. Clinicians 

must make appropriate diagnoses on the basis of such complicated knowledge. How does a 

clinician select the appropriate diagnosis? One hypothesis is that the structure of medical 

knowledge itself helps a clinician diagnose. An approach to understanding the structure of medical 

knowledge is to classify that knowledge by using some predefined criteria, such as the International 

Classification of Diseases (ICD) [2]. If the purpose of using the classification is appropriate for the 

criteria, this approach is very useful. However, the criteria do not always fit actual clinical practice. 

Complex networks have been studied extensively to determine the structure of many real 

systems such as the World Wide Web (WWW), the Internet, and biological and social networks. 

These complex networks are frequently small-world and scale-free [3–7]. Small-world networks 

have a large clustering coefficient and a small average path length. Scale-free networks are 

characterized by a power-law decay of the degree distribution p(k) ~ k
-α 

(see Sec. 2.5). The 

hierarchical organization of these complex networks has also recently been investigated [8, 9]. 

Medical knowledge is commonly described by natural language. Unlike classification by criteria, 

many properties of diseases are freely described. In description by natural language, various 

components of this medical knowledge are mutually connected in context, and a network is 

produced. This network may, in turn, influence clinical practice. However, the structure of this 

network and its influence on clinical practice are virtually unknown. Since 2001, a complex 

network analysis has been applied to natural language [10, 11]. This analysis found that the 

language network has small-world and scale-free properties [12, 13]. Here, we applied this natural 

language analysis to medical knowledge and constructed a medical knowledge network (MKN). 

                                            
1 This work is based on the article [1] and the main parts of several sections (Secs.1, 4, 

5, and 6) are quoted from [1].  
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Next, we determined that the MKN has small-world and scale-free properties. Moreover, we found 

similarities between the structure of medical knowledge and that of clinical practice. 

These findings also have several mathematical implications. The network structure of medical 

knowledge found in this paper cannot be expressed by Erdős-Rényi random graphs [14–16]. 

Although the random graph has been the most studied model in graph theory, it is insufficient for 

analyzing the medical knowledge network. The MKN would be classified as a complex network, 

but the concept of the complex network has not been established in mathematics. We consider that 

it is necessary to establish the mathematical concept of the complex network and construct a new 

mathematical framework to investigate the medical knowledge network. 
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2. Review of network theory and complex network 

 

  In this paper, medical knowledge is investigated by using network theory. Thus, we review the 

terminology of network theory and some of its significant results necessary for understanding the 

paper [17–19].   

Unless otherwise noted, the following symbols are used in the paper. 

  n: the order of a graph (i.e., the total number of nodes). 

    M: the size of a graph (i.e., the total number of edges). 

    ki: the degree of node i. 

    〈𝑘〉: the average degree of a graph. 

    p(k): the degree distribution of a graph. 

    Pik: a path between nodes i and j. 

    dG: the diameter of graph G. 

    lij: the shortest path length between nodes i and j. 

    〈𝑙〉: the average path length of a graph. 

    C(i): the cluster coefficient of node i. 

    〈C〉: the average clustering coefficient of a graph. 

 

2.1 Graph (Network)
2  

Definition (Undirected Graph)   A graph (or a network) is defined by a pair of set 𝐺 ≡ (𝑉, 𝐸), 

where 𝑉 ≡ {𝑣1, 𝑣,… , 𝑣𝑛} is a set of nodes (or vertices), and 𝐸 ≡ {𝑒1, 𝑒2, … , 𝑒𝑀} is a set of edges 

(or links). Edges are unordered pairs of nodes (vi, vj).  

The number of nodes n is called the order of the graph, and the number of edges M is called the 

size of the graph. A node has a unique label. Usually, we label the nodes with integer 

                                            
2 In this paper, we use both “network” and “graph” in exactly the same sense. The word “graph” is 

used mainly in mathematical fields, while “network” is used mainly in reference to real world 

networks and their applications. 
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labels 1, 2,… , 𝑛. When there is no misunderstanding, we identify the node with its label, and we 

can simply call a node i instead of vi. The edge ek = (i, j) connects nodes i and j. In an undirected 

graph, the edges (i, j) and (j, i) are the same.  

Figure 2-1 is an illustration of a graph in which the nodes and the edges are respectively 

expressed by circles and lines. In practical applications, a node indicates a concrete subject such as 

a person, the World Wide Web, or a word, and an edge indicates a concrete relationship between 

two nodes such as a friendship, a link, or a context, respectively. 

 

Figure 2-1. Illustration of a graph. 

 

Definition (Subgraph)   A graph G' ≡ (V', E') is said to be a subgraph of a graph G = (V, E) if all 

the nodes in V' belong to V and all the edges in E' belong to E, i.e., E'⊂E and V'⊂V. 

 

Definition (Path)   A path 𝑃𝑖0 𝑖𝑙  in a graph G = (V, E) is an ordered collection of l + 1 nodes 𝑉𝑃 ≡

{𝑖0, 𝑖1, … , 𝑖𝑙}  and l edges  𝐸𝑃 ≡ {(𝑖0, 𝑖1), (𝑖1, 𝑖2),… , (𝑖𝑙−1, 𝑖𝑙)} , 

where 𝑖𝑘  ϵ 𝑉 and (𝑖𝑘−1, 𝑖𝑘) ϵ 𝐸, for all 𝑘. The path 𝑃𝑖0 𝑖𝑙  connects nodes i0 and il. 

A closed path is a path 𝑃𝑖0 𝑖𝑙  where 𝑖0 = 𝑖𝑙 and 𝑖𝑘 ≠ 𝑖𝑝 for 𝑘 ≠ 𝑝, 0 < 𝑘, 𝑝 < 𝑙 . 

 

Definition (Connectivity)   A graph is said to be connected if there exists a path connecting any 

two nodes in the graph.  
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Examples of graphs (Fig. 2-2) 

A complete graph is a simple undirected graph in which every pair of distinct nodes is connected 

by a unique edge. A complete graph therefore has 𝑛(𝑛 − 1)/2 edges.  

A lattice graph is a graph whose drawing is embedded in some Euclidean space and forms a 

regular tiling.  

 

Figure 2-2. Examples of graphs drawn by the network analysis software program Pajek [21]. 

 

A tree is a connected graph that has no closed path.  

A random network is a network generated by a random process. Although there exist many 

random networks, the Erdős-Rényi graph Gn,p is the most common [14–16, 20]. The Erdős-Rényi 

(ER) graph (or the Edgar-Gilbert graph) is a graph with n nodes in which each of the 𝑛(𝑛 − 1)/2 

possible edges is present with probability p (the connection probability) and absent with 

probability 1 − 𝑝 . A random graph refers almost exclusively to an Erdős-Rényi graph. 
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Examples of real-world networks 

An actor network is a network whose nodes are actors. Two actors are connected by an edge if 

they played together in a film. 

A language network is a network whose nodes are words. Two words can be connected in the 

following ways [10–13, 22].  

1) Co-occurrence networks: Two words are connected if they appear together within at least 

one sentence.  

2) Syntactic networks: These are based on constituent structures that depend on the language 

grammar. 

3) Semantic networks: Starting from individual words that lexicalize concepts, these are built 

by mapping out basic semantic relations such as hypernym-hyponym relations (“flower” is a 

hypernym of “rose”), part-whole, or binary opposition (antonym). 

Although the structures of these three networks are considered to be very different, each of them 

exhibits scale-free and small-world properties (see Sections 3.3 and 3.4). In this paper, we construct 

a medical knowledge network by a method similar to a co-occurrence network. 

  World Wide Web (WWW) network: There are many Internet websites around the world, and each 

website has any number of documents and links to other websites. The World Wide Web network 

consists of these websites (nodes) and their links (edges) [23]. 

The Internet at the router level: The Internet consists of a huge number of routers and 

communication cables, each of which connects several other routers. This is a physical network.  

A power grid is a network that consists of electric power plants and power lines. This is a 

physical network.  
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2.2 Indexes characterizing graphs 

Definition (Path length)   The path length is the number of edges in the path. The shortest path 

length between nodes i and j (expressed as lij) is called the distance between i and j.  

The diameter dG of a graph G is defined as 

𝑑𝐺 ≡ max
𝑖,𝑗
𝑙𝑖𝑗   (𝐺 is connected)                                                                          

 ≡ ∞      ( 𝐺 is not connected) .                                                       (2 − 1) 

The average shortest path length 〈𝑙〉 is defined as the average value of lij over all possible pairs of 

nodes in a graph:  

     〈𝑙〉 ≡
1

𝑛(𝑛 − 1)
∑𝑙𝑖𝑗
𝑖,𝑗

 .                                                                  (2 − 2) 

By definition  〈𝑙〉 ≤ 𝑑𝐺 , and in the case of a well-behaved and bounded shortest path length 

distribution, it is possible to show heuristically that in many cases 〈𝑙〉 and 𝑑𝐺  behave in the same 

way with the network order n [18]. In general, 〈𝑙〉 increases with the graph order. However, 〈𝑙〉 is 

not so large compared with the graph order n in many real-world networks. When 〈𝑙〉 grows only 

logarithmically with n, the network is said to be small.  

 

Definition (Degree)   The degree ki of node i is defined as the number of edges in the graph 

leaving from i. The ki nodes connected to node i is said to be the neighbors of i. 

 

Definition (Degree distribution)   The degree distribution p(k) of a graph is defined as the 

probability that a node has degree k. That is,  

𝑝(𝑘) ≡
the number of nodes with degree 𝑘

𝑛
 .                  (2 − 3) 

The average degree of a graph is defined as the average value of k over all the nodes in the graph: 

                             〈𝑘〉 ≡
1

𝑛
∑𝑘𝑖

𝑛

𝑖=1

= ∑𝑘𝑝(𝑘)

∞

𝑘=0

 .                (2 − 4) 

For a random graph, 〈𝑘〉 = (𝑛 − 1)𝑝 ~ 𝑛𝑝. In real-world significant networks, 〈𝑘〉 is not very 



12 

 

large, but not so small that the network is disconnected. Hence, we usually suppose 𝑛 ≫ 〈𝑘〉 ≫

log𝑛 ≫ 1, where 〈𝑘〉 ≫ log𝑛 guarantees that a random graph will be connected (see theorem 2.1) 

[3, 14].  

 

Definition (Clustering coefficient)   The clustering coefficient C(i) of node i is defined as the ratio 

of the number of edges within the neighbors of i to the possible number of such edges. If the degree 

of node i is ki and the neighbors of i have ei edges among them, we have 

 

                 𝐶(𝑖) ≡
𝑒𝑖

𝑘𝑖(𝑘𝑖 − 1)/2
                  (  𝑘𝑖 > 1)                                                                     

                                      ≡ 0                                         (𝑘𝑖 ≤ 1).                                                       (2 − 5) 

Clustering implies the property that if node i is connected to node j and at the same time i is 

connected to l, then j is also connected to l with a high probability. Moreover, a large C(i) implies 

that the periphery of node i is dense with edges. 

The average clustering coefficient of a graph is simply given by 

                             〈𝐶〉 ≡
1

𝑛
∑𝐶(𝑖)

𝑛

𝑖=1

.                                                                                     (2 − 6) 

Since  0 ≤ 𝐶(i) ≤ 1, then 0 ≤ 〈𝐶〉 ≤ 1. 

  An Erdős-Rényi graph has a small 〈𝐶〉, or 〈𝐶〉  → 0 when  𝑛 → ∞. From this, a large 〈𝐶〉 

implies that there exists deviation of the edge density in a network. Moreover, the average clustering 

coefficient is a measure of the intrinsic potential modularity of the network, for example, of a 

metabolic network [8]. 

Properties of various networks 

 Table 2-1 shows the properties of several graphs [18, 19]. In summary, lattices have a large 

average shortest path length (or a large diameter), and some lattices have a finite positive clustering 

coefficient, regardless of the order of the graph. On the contrary, a random graph (Erdős-Rényi 
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graph) has a small average path length, and its clustering coefficient approaches zero with increasing 

n. Compared with these properties, a real-world network has a small average path length and a large 

clustering coefficient. Therefore, we cannot completely investigate the real-world network by using 

these simple network models.  

 

Table 2-1. Properties of some graphs. 

 Complete graph Lattice Erdős-Rényi graph Gn,p  

  square lattice 
triangular 

lattice 
(when n is large) 

𝑘𝑖 or 〈𝑘〉 𝑛 − 1 4 6 np 

〈𝑙〉 1 ≈ √𝑛 ≈
log n

log 〈𝑘〉
 * 

〈𝐶〉 1 0 2/5 ≈
〈𝑘〉

𝑛
 * 

𝑝(𝑘) 𝛿𝑘,𝑁−1 𝛿𝑘,4 𝛿𝑘,6 ≈
𝑒−𝜆𝜆𝑘

𝑘!
 (𝜆 = 𝑛𝑝)** 

* see Sec. 2.3 

Given two functions 𝑓(𝑛) and 𝑔(𝑛), when lim𝑛→∞
𝑓(𝑛)

𝑔(𝑛)
= 𝐴, where A is a finite positive value, we denote 

 𝑓(𝑛) ≈ 𝑔(𝑛). When lim𝑁→∞
𝑓(𝑛)

𝑔(𝑛)
= 0, we denote 𝑓(𝑛) ≼ 𝑔(𝑛).  

**For a random graph 𝐺𝑛,𝑝, 𝑝(𝑘) =
(𝑛−1)!

𝑘!(𝑛−1−𝑘)!
𝑝𝑘(1 − 𝑝)𝑛−1−𝑘. When n is large and p is small, whereas the 

product λ = n𝑝 is of moderate magnitude, p(k) is approximated by a Poisson distribution, i.e., 𝑝(𝑘) ≈
𝑒−𝜆𝜆𝑘

𝑘!
.  

 

 

 

2.3 Random graph model 

The random graph model is a concept introduced by Erdős and Rényi [14–16, 20]. The model 

ℊ(𝑛, 𝑝) is the set of all random graphs 𝐺𝑛,𝑝 with node set V = {1, 2,…, n} in which the edges are 

chosen independently and with probability p. Therefore, for any graph 𝐺𝑛,𝑝 in ℊ(𝑛, 𝑝), we can 

consider the probability 𝑃({𝐺𝑛,𝑝}): if 𝐺𝑛,𝑝 has m edges (0 ≤ 𝑚 ≤ 𝑀), then 

     𝑃({𝐺𝑛,𝑝}) = 𝑝
𝑚𝑞𝑀−𝑚      where  𝑀 = (

𝑛
2
)  and 𝑞 = 𝑝 − 1 . 

Therefore, if A is a subset of ℊ(𝑛, 𝑝), then  𝑃(𝐴) = ∑ 𝑃({𝐺𝑛,𝑝})𝐺𝑛,𝑝∈𝐴 . 
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If 𝑄 is a property that a graph may or may not possess, the probability 𝑃(𝑄) that the random 

graph possesses the property 𝑄  is defined as 

 𝑃(𝑄) = P({𝐺𝑛,𝑝 ∈ ℊ(𝑛, 𝑝): 𝐺𝑛,𝑝 possesses the property 𝑄}) . For instance,  𝑃{𝐺𝑛,𝑝 is connected} =

𝑃({𝐺𝑛,𝑝: 𝐺𝑛,𝑝 is connected}). This probability varies depending on the function 𝑝(𝑛). Erdős and 

Rényi studied the evolution of random graphs [15]. They made an issue of “typical” properties, i.e., 

such properties for which the probability tends to 1 if 𝑛 → ∞ when 𝑝 = 𝑝(𝑛). In addition, almost 

every (a.e.) graph in ℊ(𝑛, 𝑝) is said to have the property Q if lim𝑛→∞ 𝑃(𝑄) = 1 when 𝑝 = 𝑝(𝑛). 

There are many properties of random graphs. The following theorems are important in this study. 

 

Theorem 2.1
3
 (Erdös and Rényi, 1959 [14] and Bollobás, 2001 [20])  

Let c be a fixed real number and let 𝑝 =
{log 𝑛+𝑐+𝑜(1)}

𝑛
, then  

𝑃{𝐺𝑛,𝑝 is connected}
𝑛→∞
→   𝑒−𝑒

−𝑐
. 

 

  If  𝑝1 > 𝑝2 , then 𝑃{𝐺𝑛,𝑝1  is connected} ≥ 𝑃{𝐺𝑛,𝑝2  is connected}.  Let   𝑝′ = (1 + 𝜀) log𝑛 /𝑛 

and let 𝑐 = 𝜀 log𝑛𝑐  for an arbitrary constant c. Since  𝑝′ =
(1+𝜀) log 𝑛

𝑛
>
log 𝑛+𝑐+𝑜(1)

𝑛
= 𝑝  for 

 𝑛 > 𝑛𝑐 , then 

𝑃{𝐺𝑛,𝑝′ is connected} ≥ 𝑃{𝐺𝑛,𝑝 is connected}
𝑛→∞
→   𝑒−𝑒

−𝑐
. 

Therefore, 𝑃{𝐺𝑛,𝑝′ is connected}
𝑛→∞
→   1. Namely, when 𝑝 = (1 + 𝜀) log𝑛 /𝑛, almost every graph 

is connected. From these considerations, we can assume that the network is connected for large n 

if 𝑝 >
log 𝑛

𝑛
. Using the average degree 〈𝑘〉, if 〈𝑘〉 > log 𝑛, then the network is assumed to be 

connected.  

The diameter is an important index in various applications of network theory. There are many 

papers investigating the diameter of random graphs [24–27]. Bollobás [24] showed that the 

                                            

3 Given two functions 𝑓(𝑛) and 𝑔(𝑛), when lim𝑛→∞
𝑓(𝑛)

𝑔(𝑛)
= 𝐴, where A is a finite positive value, 

we denote  𝑓(𝑛) = 𝑂(𝑔(𝑛)) or 𝑓(𝑛) ≈ 𝑔(𝑛), and when A = 0, we denote 𝑓(𝑛) = 𝑜(𝑔(𝑛)). 
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diameter of a.e. graph in ℊ(𝑛, 𝑝) is concentrated on at most two values if  
𝑛𝑝

log 𝑛
→ ∞:  

⌊
log𝑛 + log log𝑛

log〈𝑘〉
⌋ ≤ 𝑑𝐺𝑛,𝑝 ≤ ⌈

log𝑛 + log log𝑛 + 1

log〈𝑘〉
⌉  4. 

However, the condition that 
𝑛𝑝

log 𝑛
→ ∞ is seldom satisfied in real world networks. On the contrary, 

a sparse graph (𝑛𝑝 ≤ c log𝑛  for some constant 𝑐 > 1 ) is common in the real world. Theorem 2.1 

implies that if 𝑛𝑝 > log𝑛, then the network can be assumed to be connected. For a network that is 

sparse and connected (log𝑛 < 𝑛𝑝 < 𝑐 log𝑛), Chung et al. proved the following three theorems 

[27]. 

 

Theorem 2.2 (Chung and Lu, 2001 [27])   

If 𝑛𝑝 ≥ 𝑐log𝑛 for some constant c > 8, the diameter of almost every random graph 𝐺𝑛,𝑝 is 

concentrated on at most two values at 
log 𝑛

log 𝑛𝑝
=

log 𝑛

log〈𝑘〉
 . 

 

Theorem 2.3 (Chung and Lu, 2001 [27])   

If 𝑛𝑝 ≥ 𝑐log𝑛 for some constant c > 2, the diameter of almost every random graph 𝐺𝑛,𝑝 is 

concentrated on at most three values at 
log 𝑛

log 𝑛𝑝
=

log 𝑛

log〈𝑘〉
 . 

 

Theorem 2.4 (Chung and Lu, 2001 [27])  

If 𝑛𝑝 ≥ 𝑐log𝑛 for some positive constant c,  

⌈
log (

𝑐𝑛
11)

log𝑛𝑝
⌉ ≤ 𝑑𝐺𝑛,𝑝 ≤ ⌈

log (
33𝑐2

400 𝑛 log𝑛)

log 𝑛𝑝
⌉ + 2 ⌊

1

𝑐
⌋ + 2 . 

The diameter of almost every random graph 𝐺𝑛,𝑝 is concentrated on at most 2 ⌊
1

𝑐
⌋ + 2 values. 

 

                                            
4  ⌊𝑥⌋: the floor of x = max{𝑚 ∈ ℤ | 𝑚 ≤ 𝑥}, ⌈𝑥⌉: the ceiling of x = min{𝑛 ∈ ℤ | 𝑛 ≥ 𝑥}. 
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Ultimately, when 𝑛𝑝 ≥ log𝑛, the diameter of 𝐺𝑛,𝑝 is near 
log 𝑛

log 𝑛𝑝
=

log 𝑛

log〈𝑘〉
. 

Average path lengths are more frequently used than diameters in many applications. Newman 

[28] described that the average path length is approximately equal to the diameter. Therefore, the 

average path length 〈𝑙〉 is also near 
log 𝑛

log 𝑛𝑝
=

log 𝑛

log〈𝑘〉
. All the networks constructed in this study 

satisfy the condition that  log𝑛 ≤ 𝑛𝑝 ≤ 2 log𝑛. Therefore, if these networks can be expressed by 

random graphs, then their average path lengths should be near 
log 𝑛

log〈𝑘〉
. 

The clustering coefficient C(i) and the average clustering coefficient 〈𝐶〉 of the random graph 

are random variables in the probability space ℊ(𝑛, 𝑝). Therefore, we can define their expectations, 

i.e., E(C(i)) and 𝐸(〈𝐶〉), in the probability space ℊ(𝑛, 𝑝). We use the following theorem in this 

paper [17]. 

Theorem 2.5 (Konnno and Ide, 2008 [17])  

Let C(i) be the cluster coefficient of any node i of a random graph Gn, p and let E(C(i)) be the 

expectation of C(i), then 

        𝐸(𝐶(𝑖)) = 𝑝[1 − (1 − 𝑝)𝑛−1{1 + (𝑛 − 2)𝑝}] . 

 

Because 𝐸(𝐶(𝑖))
𝑛→∞
→   𝑝, the expectation of the average clustering coefficient 𝐸(〈𝐶〉)

𝑛→∞
→   𝑝 . If a 

real network having n nodes and M edges is expressed by a random graph model, then its average 

clustering coefficient 𝐸(〈𝐶〉) ~ 𝑝 = 〈𝑘〉 𝑛⁄ = 2𝑀 𝑛(𝑛 − 1)⁄  .  

 

2.4 Small-world  

  When a network has a large average clustering coefficient 〈𝐶〉 and a small average shortest path 

length 〈𝑙〉, it is called a “small-world” network. The large 〈𝐶〉 means that 〈𝐶〉 → 𝐴(> 0),when 𝑛 →

∞, and the small 〈𝑙〉 means that  〈𝑙〉 grows only logarithmically with 𝑛. Given the impossibility of 

changing n in a real-world network, we compare 〈𝐶〉 and 〈𝑙〉 to those of the ER graph with the same 
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numbers of nodes n and edges M, i.e., the connection probability  𝑝 = 2𝑀 𝑛(𝑛 − 1)⁄ . When  

 〈𝑙〉 ≤ 〈𝑙〉𝐸𝑅 and 〈𝐶〉 ≫ 〈𝐶〉𝐸𝑅 , we determine that the network is a small-world network. Many 

real-world networks are small-world networks such as the WWW, actor networks, and language 

networks. 

 In a small-world network, every node can be reached within a few steps. When a network is 

constructed for communication, this property makes information rapidly pass throughout the network. 

If a sexual-contact network has the small-world property, a virus like HIV that causes an infectious 

disease can spread quickly all over the world [29].  

 Watt and Strogatz found that networks that are not small-world networks, such as lattice networks, 

can be made to have the small-world property by adding a few shortcut edges connecting two 

randomly selected nodes to the network (Fig. 2-3) [3]. Previously, disease infections were usually 

limited to a geographical neighborhood; nowadays they can quickly spread to distant people all over 

the world owing to express transportation systems such as airplanes, cars, and high-speed railways. 

These express transportation systems correspond to shortcuts in the network.  

 

Figure 2-3. The small-world network by Watts and Strogatz drawn by the network analysis software Pajek [20]. 

 

Another property of small-world networks is a large average clustering coefficient. The concept of 
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clustering in a network refers to the tendency observed in many natural networks to form cliques in 

the neighborhood of any given node [18, p10]. Nodes in the cliques are densely related to each other, 

i.e., they connect each other, implying that the network is difficult to break. 

 

2.5 Scale-free networks 

  A scale-free network is a network whose degree distribution follows a power law. That is, the 

degree distribution p(k) is expressed as follows: 

𝑝(𝑘) = 𝐴𝑘−𝛼   for    𝑘 > 𝑘𝑚𝑖𝑛  .                                                   (2 − 7) 

There must be a lowest value kmin above which the power law is obeyed. The constant α is called 

the exponent of the power law (or the power exponent). Graphs of 𝑝(𝑘) appear as straight lines in 

logarithmic scales on both axes on a so-called log-log plot, and we can calculate α from the slopes of 

the lines. 

  The power law is frequently observed in many real-world networks, e.g., the WWW, language 

networks, and actor networks. However, networks constructed from simple models, e.g., 

Erdős-Rényi graphs, lattices, and trees, are not scale-free networks. Scale-free networks have nodes 

that connect a huge number of nodes, i.e., the nodes have a very large degree. These nodes are called 

hubs. Because hubs can connect a huge number of nodes, the diameter of the network is subject to 

becoming smaller.  

  The properties of the network change according to the size of the power exponent. If a power law 

is approximated by a continuous distribution, we obtain the following equations:   

∫ 𝐴𝑘−𝛼𝑑𝑘 = 𝐴[𝑘−𝛼+1/(−𝛼 + 1)]𝑘𝑚𝑖𝑛
∞ =

𝐴

𝛼 − 1
𝑘𝑚𝑖𝑛
−𝛼+1 (𝛼 > 1)

∞

𝑘𝑚𝑖𝑛

,                           (2 − 8) 

 

∫ 𝑘𝐴𝑘−𝛼𝑑𝑘
∞

𝑘𝑚𝑖𝑛

=
𝐴

𝛼 − 2
𝑘𝑚𝑖𝑛
−𝛼+2                                                  (𝛼 > 2),                           (2 − 9) 

 

∫ 𝑘2𝐴𝑘−𝛼𝑑𝑘
∞

𝑘𝑚𝑖𝑛

=
𝐴

𝛼 − 3
𝑘𝑚𝑖𝑛
−𝛼+3                                                 (𝛼 > 3).                        (2 − 10) 
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From these equations, we obtain the following properties: 

1) α > 1. 

2) For 1 < α ≤ 2, the mean of the degree values becomes infinite, i.e., the degree distribution has 

no finite mean. 

3) For 2 < α ≤ 3,  the mean square of the degree values become infinite, i.e., the degree distribution 

has no finite variance. 

“No finite mean” means that in real data, the mean value changes according to the size of the 

sampled data. In addition, “no finite variance” means that variations in the means are so large that the 

mean value becomes meaningless. Accordingly, the properties of the network discontinuously 

change at values of the power exponent of 2 and 3. Thus, it is thought that scale-free networks can be 

classified by the value of the power exponent.   

Several models that produce scale-free networks have been proposed. Among them, the 

“preferential attachment” model (BA model) by Barabási and Albert is the most important [4]. This 

model is a “rich-gets-richer” model (Yule process) [30–31]. The BA model is as follows: 

Starting with a connected network with a small number (m0) of nodes, at every time step a 

new node with m (≤ m0) edges is added to the network. These edges connect the new node to m 

different nodes already present in the system. To incorporate preferential attachment, it is 

assumed that the probability Πi that a new node will be connected to node i depends on the 

degree ki of that node, such that 𝛱𝑖 =
𝑘𝑖

∑ 𝑘𝑗
𝑛
𝑗=1

     (1 ≤ 𝑖 ≤ 𝑛).  

 After t time steps the model leads to a network with t + m0 nodes and mt edges. A numerical 

simulation demonstrates that this network evolves into a scale-free network with the probability that 

a node has k edges following a power law with power exponent 𝛼 = 2.9 ± 0.1. Barabási et al. have 

also analytically calculated the exponent to be α = 3.0.   

 Although the BA model exhibits 𝛼 = 3.0, many real-world networks exhibit scale-free networks 

with exponents ranging from 2 to 3. However, this is not crucial because the exponent can be 
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changed by slightly changing the BA model. Moreover, several variations of the BA model have 

been proposed [5–9].  

 The development of power-law scaling in the model indicates that growth and preferential 

attachment play important roles in network development. To verify that both ingredients are 

necessary, Barabási et al. investigated two variants of the model. The growing character of the 

network was retained in Model A, but preferential attachment was eliminated. Model B did not have 

the growing character but kept preferential attachment. As a result, neither model exhibited the 

scale-free feature [4, 32]. 

 

2.6 Truncation of the power law 

  The BA model produces a network with a degree distribution that obeys a complete power law. 

However, most real-world networks alleged to have a power-law distribution actually have degree 

distributions with a power-law regime followed by a sharp cutoff, such as an exponential or Gaussian 

decay of the tail [33]. This type of distribution is called a truncated power law (Fig. 2-4). 

 

 

Figure 2-4. Log-log plot of a truncated power law. 

 

   A scale-free network emerges in the context of a growing network in which new nodes connect 

preferentially to the more highly connected nodes in the network (preferential attachment), i.e., the 

probability Πi that a new node will be connected to node i is described by the formula 𝛱𝑖 =
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𝑘𝑖

∑ 𝑘𝑗
𝑛
𝑗=1

     (1 ≤ 𝑖 ≤ 𝑛) . However, preferential attachment is not satisfied without preconditions. 

Several constraints on preferential attachment are suggested as follows. 

1) Information filtering [34] 

Although an added new node must know the degrees of all existing nodes to fulfill the 

preferential attachment, this situation is not plausible in a large, growing network. It is likely 

that a new node of the large, growing network will know only information concerning a subset 

of existing nodes (filtered information). Then the new node will make decisions on which 

node to connect with, based on the filtered information. 

Specifically, preferential attachment of the BA model is modified as follows. Let f be the 

constant fraction of “filtered nodes” in the network. The probability Π(i, t) that a new node 

will be connected to node i at time t is described by the following formula: 

𝛱(𝑖, 𝑡) =
𝑘𝑖

∑ 𝑘𝑗𝑗∈𝐶
  ,                                                                (2 − 11) 

where C is a randomly selected subset of nodes containing 𝑛(𝑡) = (𝑡 + 𝑚0)𝑓 nodes (m0 is 

the number of nodes at the start).  

 2) Aging of the nodes [33] 

It is unlikely that a node can permanently receive new edges. Even a highly connected node 

will, eventually, stop receiving new edges. The node is still part of the network and 

contributes to network statistics, but it no longer receives edges.  

This idea is achieved by modifying the BA model. First, nodes are classified into one of 

two groups: active or inactive. Inactive nodes cannot receive new edges. All new nodes are 

created active, but they may become inactive after each time step with a constant probability. 

Ultimately, the probability Π(i, t) that a new node will be connected to node i at time t is 

described by 

𝛱(𝑖, 𝑡) =
𝑘𝑖

∑ 𝑘𝑗𝑗∈𝐴
  ,                                                           (2 − 12) 



22 

 

where A is a subset of nodes containing only active nodes at time t. 

3) Limited capacity of a node to receive new edges [33, 35] 

This is based on the idea that there are physical costs involved in adding new edges. In the 

real world, an edge has physical entities such as electric cables or airline routes, which have 

related costs. Thus, there is a limitation on a node receiving edges. 

In this constraint, nodes are classified into two groups: active or inactive, as is the case with 

“Aging”. Every node is created active, but it becomes inactive when its degree reaches a 

maximum number of edges kmax. The probability Π(i, t) is described by the same equation as 

the “Aging” constraint (eq. (2-12)). 

Introducing these constraints to any of the models leads to cutoffs on the power-law decay of the tail 

of the degree distribution. 

 

2.7 Scale-free and small-world properties 

 It is known that the power exponent of a scale-free network is associated with the average shortest 

path length 〈𝑙〉. Cohen and Havlin show the following relations [36]. 

 Let α be the power exponent of the degree distribution, then 

1) for 2 < α < 3 

         〈𝑙〉 ≈ log log𝑛,                                                                                                 (2 − 14)  

2) for α = 3 

            〈𝑙〉 ≈
log𝑛

log log𝑛
 ,                                                                                                (2 − 15) 

3) and for 𝛼 > 3 

             〈𝑙〉 ≈ log𝑛.                                                                                                       (2 − 16) 

Thus, a scale-free network has an average shortest path length that grows only logarithmically with 

n. This is also one of the conditions for a small-world network. The other condition, “large average 

clustering coefficient”, is not always satisfied in a scale-free network. For example, the BA model 
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has an average clustering coefficient that approaches zero with increasing n. Overall, whether a 

scale-free network is small-world depends on its cluster coefficient.  

 

 

2.8 Hierarchical structure  

  The BA model is a scale-free network but not small-world because the average clustering 

coefficient approaches zero with increasing n. Several scale-free and small-world networks have 

been proposed. Some of them are hierarchical models constructed by using the hierarchical rule (or 

recursive rule), which is the process of repeating items in a self-similar way as used in deterministic 

fractals. A model based on this hierarchical rule is called a network that has a hierarchical structure.  

   Among hierarchical models, Ravasz’s model is the most important [8, 9]. This model is 

constructed as follows (Fig. 3-4). 

Step 0) Start from a complete network consisting of n0 nodes. Make one of the nodes the central 

node. 

Step 1) Create n0-1 identical replicas. Connect the peripheral nodes of each replica to the 

central node of the original network. 

Step 2) Create n0-1 replicas of the obtained network. Connect the peripheral nodes to the 

central node of the original network. 

Step 3) Repeat step 2.  

Although Ravesz’s model itself is a deterministic model, it can be easily converted to a random 

model involving preferential attachment similar to the BA model. These hierarchical models have 

two significant features: 

  1) A system-size independent clustering coefficient. 

  2) The average of the clustering coefficients of nodes with k edges follows the power law 

                𝐶(𝑘) ≈
1

𝑘
 .                                                                                                              (2 − 17) 
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These two features are used to verify whether a network is hierarchical. By examining these 

features, it is verified that actor, language, and WWW networks have hierarchical features, whereas 

the Internet at the router level and power grid networks do not. However, it should be noted that 

hierarchical structure is not precisely defined. 

 

Figure 3-4. Rabasz’s model drawn by the network analysis software Pajek [21]. 

 

2.9 Complex network 

  The definition of a complex network is controversial. Real-world networks have features different 

from simple network models such as a lattice network and the Erdős-Rényi network. In particular, 

many real-world networks have small-world and scale-free features. Some researchers call a network 

that has these features a complex network. Others consider that the concept of a complex network 

relates to complex systems. While the precise definition of complex systems is also subjective, it is 

plausible that the following few basic features characterize complex systems [18]: 

1) Complex systems have emergent phenomena in the sense that these phenomena are the 

spontaneous outcome of the interactions among the many constituent units (self-organization 
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phenomena). 

2) Decomposing the system and studying each subpart in isolation do not allow an understanding of 

the whole system and its dynamics.  

3) Complex systems have complications at all scales (possibly under physical constraints) of the 

system. Those complications may produce a long-tail distribution like a power-law distribution.  

 The relationship between scale-free and self-similar properties has been investigated in several 

papers [5, 6, 37]. Barabási et al. [5] pointed out that although their model, which has the scale-free 

property, seems to display self-similarity, this self-similarity is not complete. This is because a model 

that has the scale-free property needs global information about the network. For example, the central 

node in Rabasz’s model (Fig. 3-4, step 0) keeps a detailed record of the system size through the 

number of edges it has. Such global information is never present in a local element of a fractal.  

However, Song et al. [37] have argued that a variety of real networks that have a power-law 

distribution possess the self-similar property. 

 

Classification of complex networks   

 As described above, real-world networks and complex networks can be classified by features such 

as those summarized in Table 2-2, which are not always independent. For example, in a network 

whose degree distribution follows a power-law, 〈𝑙〉 grows only logarithmically with n. However, we 

can classify networks to some degree, and two networks that have the same features can be said to be 

similar networks.    
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Table 2-2.  Properties of complex networks. 

Network 〈𝑙〉 〈𝐶〉 p(k) Other features 

Small-world network ≼ log 𝑛   or ≈ log 𝑛 ≈ 𝐶0(> 0) various  

Scale-free network ≼ log 𝑛   or ≈ log 𝑛 various power law  

Hierarchical model ≼ log 𝑛   or ≈ log 𝑛 constant power law 𝐶(𝑘) ≈
1

𝑘
 

Self-similar network ≼ log 𝑛   or ≈ log 𝑛 various power law self-similarity 

 〈𝑙〉 is the average shortest path length, 〈𝐶〉 the average clustering coefficient, n the order of the network, p(k) 

the degree distribution of the network, and C(k) the average of the clustering coefficients of nodes with k edges. 

Given two functions 𝑓(𝑛) and 𝑔(𝑛), when lim𝑛→∞
𝑓(𝑛)

𝑔(𝑛)
= 𝐴, where A is a finite positive value, we denote 

 𝑓(𝑛) ≈ 𝑔(𝑛). When  lim𝑁→∞
𝑓(𝑛)

𝑔(𝑛)
= 0, we denote 𝑓(𝑛) ≼ 𝑔(𝑛).  
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3. Background of the study 

 Long-tail distributions like the power-law distribution have been studied in many fields. For 

example, the word frequency of natural language, the relationship between the magnitude and the 

total number of earthquakes (Gutenberg-Richter law), and income distribution in economics are 

expressed by power-law distributions [38–43]. The power-law distribution has also been studied in 

the field of medical service: it is known that the frequency of diagnoses and the length of stay of 

hospital patients exhibit power-law distributions [44–47].  

The power law has also been highlighted in relation to nonlinear dynamics that are formulated in 

fractal geometry and chaos theory [41, 48]. In systems consisting of many elements, an 

inter-element correlation (interaction) over a long period is undoubtedly related to the origin of a 

power law [49]. The probability of word appearance in natural language is affected by the context. 

In other words, the choice of words is context-dependent. This is considered to be a necessary 

condition to create a power-law distribution.  

 It is said that a quantity x obeys a power law if its probability density p(x) is described by  

                                 𝑝(𝑥)  ∝ 𝑥−𝛼   (𝑥 ≥ 𝑥𝑚𝑖𝑛  > 0),                                                                 (3 − 1) 

where α is a constant parameter of the distribution known as the (power) exponent. The 

magnitude of the exponent α determines the tail behavior. A power-law distribution with an 

exponent less than 2 has no finite mean, whereas one with an exponent less than 3 has no finite 

variance.  

  In many cases, it is useful to consider the complementary cumulative distribution (CCD) of the 

distribution p(x): 

                                             𝑃(𝑥) ≡ ∫ 𝑝(𝑥′)𝑑𝑥′
∞

𝑥

= (
𝑥

𝑥𝑚𝑖𝑛
)
−𝛼+1

.                                                  (3 − 2) 

 For discrete cases, the power-law distribution is sometimes called “Zipf’s law”. The frequency 

Fn of the quantity of the rank n is expressed as  

                                                        𝐹𝑛 =
𝐴

𝑛ζ
 ,                                                                                              (3 − 3) 
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where A is a constant, and ζ is referred to as the Zipf exponent. The power exponent α is expressed 

by ζ as follows (Appendix 1): 

                                                                 𝛼 =
ζ + 1

ζ
 .                                                                                 (3 − 4) 

The graphs of the functions (3-1) to (3-3) appear as straight lines in a log-log plot, and we can 

calculate α and ζ by their slopes. Although all three functions may lead to the same value of α, the 

CCD usually leads to the most accurate value (Appendix 2). Therefore, we typically express a 

power-law distribution by its CCD. 

  Figure 3-1 shows the CCDs of the diagnosis frequency for several departments of a hospital [44]. 

In these plots, the CCDs are plotted on a logarithmic scale. The regression lines for each dataset are 

also shown. The good fits by the regression lines mean that for all departments, the data follow a 

power law. The power exponents calculated from the slopes of the regression lines show that all the 

power exponents are close to 2 (Table 3-1).  

 

Table 3-1. Results of regression analyses. 

 

 

free written group 

 

 

 

α (mean ± SE) R
2
 N 

total 2.01±0.011 0.97 219 

internal medicine 1.91±0.014 0.97 127 

pediatrics 1.83±0.016 0.97 70 

surgery 1.96±0.022 0.97 68 

neurosurgery 2.05±0.017 0.99 34 

ophthalmology 2.04±0.010 0.99 52 

orthopedics 2.24±0.013 0.99 51 

cardiac surgery 1.97±0.022 0.97 68 

dermatology 2.07±0.011 0.99 41 

urology 1.87±0.018 0.98 49 

α is the power exponent, R
2
 the coefficient of determination in linear regression analysis, N 

the number of data, and SE the standard error. The coefficients of determination and the 

power exponents are obtained by linear regression analyses for the log-log plots of the 

CCDs of diagnosis frequencies. 
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● Total diagnosis   ▲ Internal medicine   ■ Pediatrics  

 

 

● Surgery   ▲ Ophthalmology   ■ Dermatology 

Figure 3-1. The CCDs of diagnosis frequencies for several departments of a hospital. 
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These results imply that a patient diagnosis is affected by the diagnoses of previous patients. This 

is surprising, because it strongly differs from the conventional understanding that a diagnosis is 

dependent only on the individual patient’s condition.  

We further review the process involved when making a diagnosis. Not all clinical diagnoses are 

independent. In fact, some diagnoses are strongly related. For example, a patient who shows 

symptoms of a common cold may be diagnosed with one of the following diseases: common cold, 

upper respiratory infection, acute rhinitis, acute pharyngitis, or acute bronchitis. These names are 

easily used interchangeably (or diagnosed in error). In this sense, these terms are closely related; in 

other words, the “distance” between them is short. In contrast, because a femoral fracture and an 

upper respiratory infection would not be confused, these two diagnoses will be unrelated, and the 

distance between them will be great.  

   When diagnosing a patient, a doctor chooses the diagnosis that accommodates symptoms most 

similar to those of the patient. Let us consider a situation where several close diagnoses fit the 

symptoms of the patient, but there is no absolute standard for selecting one of them because of the 

vagueness of each diagnosis. In such a case, the selection of a diagnosis depends on the doctor’s 

subjective opinion. This situation is similar to the selection from many plausible words when 

writing a sentence. In natural language, a word is selected based on context. Similarly, the selection 

of a diagnosis is affected by many factors such as the diagnoses of previous patients with similar 

symptoms, the diagnosis frequency distribution of that hospital, and the doctor's skill. Consequently, 

the selection of a diagnosis is not only dependent on the patient's condition, but also on the 

condition of the doctor, previous patients, and the hospital where the doctor works. These factors 

would create an inter-diagnostic correlation, and this correlation may result in a power-law 

distribution.  

As mentioned above, the frequency of diagnoses is influenced by the doctor’s decision-making 

process when diagnosing. For this reason, an intimate evaluation of this process is required to 
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investigate the mechanism that produces the frequency distribution of diagnoses. It is, however, 

difficult to evaluate this by a simple model because a doctor’s decision-making is far from being 

simple. More than anything, a doctor’s decision-making is based on a large amount of medical 

knowledge. In other words, diagnoses by doctors are influenced by medical knowledge. 

Investigation of the structure of medical knowledge is, therefore, indispensable to evaluate the 

decision-making of doctors. For these reasons, our aim in this study is to clarify the structure of 

medical knowledge. 
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4. Methods 

4.1 Construction of the medical knowledge network (MKN) 

We analyzed “Harrison's Principles of Internal Medicine, 15th Edition”, which is one of the most 

important textbooks on internal medicine. We analyzed three chapters: “Disorders of the 

Cardiovascular System”, “Disorders of the Respiratory System”, and “Neurologic Disorders”. All 

38 353 sentences that comprise these chapters were analyzed. Because the purpose of our analysis 

was to determine the structure of medical knowledge rather than that of language, we confined the 

objects of study only to medical terms consisting of several words related to medical knowledge. 

We then classified these terms into four categories: “diagnosis”, “subjective symptom”, “objective 

symptom”, and “other medical terms”. For instance, “stomach cancer” is a term consisting of two 

words and classified as “diagnosis”. These classifications were made by two medical doctors and a 

healthcare information technologist. However, in this study we used only the difference between 

“diagnosis” and the other three categories. All categories but “diagnosis” remain for future analyses. 

We then constructed the medical knowledge network by first defining the medical terms as nodes 

of the network, then defining the edges that mutually connected a pair of terms in a sentence (Figs. 

4-1 and 4-2). 

 

4.2 Construction of the diagnosis database network  

We also applied the network analyses to a database of “disease” in the hospital information 

system of Toyonaka Municipal Hospital in Japan. This database consisted of 218 063 records, 

which represented 2 years of data. Each database record contained several items in addition to 

“diagnosis”, such as “patient ID”, “department code”, and “doctor ID”. Therefore, by assigning 

these items to nodes and mutually connecting all nodes in each record by edges, we constructed the 

diagnosis database network (DDN, Fig. 4-2). Because this network was too large to analyze, we 

analyzed only a partial network consisting of randomly selected nodes. 

Our use of these data was approved by the Toyonaka Municipal Hospital. All of the patient data 

were de-identified, and because the analysis was purely statistical, there were no ethical issues. 
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Figure 4-1. Construction of the MKN. 
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Figure 4-2. MKN and DDN. The original networks have so many nodes that they cannot be drawn. Thus, here 

only the subnetworks are depicted, with about 1000 nodes.   

MKN: ●, diagnosis; ●, sub. sym.; ●, obj. sym.; ●, other med. term; ●, others 

DDN: ●, diagnosis; ●, pt. ID; ●, dep.; ●, Dr.; ●, Pc. ID; ●, data 
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5. Numerical analysis and conclusions 

We calculated the average path length and the average clustering coefficient of the MKN (see 

definitions in Sec. 2) to be 4.317 and 0.86, respectively. The implication is that the MKN has nearly 

the same average path length and a far larger average clustering coefficient compared with the 

corresponding random network with the same number of nodes and edges as the original network. 

These findings suggest that the MKN has the small-world property (Table 5-1), which may be 

useful for a clinician to quickly find the correct diagnosis among a large number of diseases. In a 

small-world network, every node (i.e., every diagnosis) can be reached within a few steps [10, 22]. 

 

Table 5-1. Profiles of the MKN and the DDN. 

 〈𝑘〉 is the average degree, 〈𝐶〉 the average clustering coefficient, 〈𝐶〉random the average clustering coefficient of 

the corresponding random network estimated from Table 2.1 (Sec. 2.2), 〈𝑙〉 the average path length, and 

〈𝑙〉𝑟𝑎𝑛𝑑𝑜𝑚  the average path length of the corresponding random network estimated from Table 2.1 (Sec. 2.2). For 

both the MKN and DDN, the average path length is close to that expected for a random graph and 𝐶 ≫ 𝐶𝑟𝑎𝑛𝑑𝑜𝑚 , 

meaning that both the MKN and DDN have small-world features. For the DDN, we constructed a partial network 

by randomly selecting about 45 000 nodes from the DDN and analyzed this partial network. (Modified from 

Table 1 in Ref. [1].) 

 

We also found that the degree distribution of the MKN exhibits a power law with a rapidly 

decaying tail (Fig. 5-1a) [8, 33, 50]. This finding indicates that the MKN is a truncated, scale-free 

network. The exponent is 2.045, which is consistent with many other complex networks whose 

exponents range from 2 to 3 [4, 19]. Scale-free behavior is a consequence of two generating 

mechanisms: networks expanding continuously by the addition of new nodes, and new nodes 

attaching preferentially to already well-connected sites (preferential attachment) [4, 51]. If 

preferential attachment is completely fulfilled, the network exhibits entirely scale-free behavior; 

however, if preferential attachment is not completely fulfilled because of, for example, limitations 

on the available information, scale-free behavior is truncated [31, 34, 52, 53]. For the MKN, our 
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results suggest that preferential attachment may be somewhat restricted. 

We also investigated the hierarchical structure of the MKN. The preferential attachment model 

is a simple network growth model with no hierarchical structure [4]. In contrast, many networks in 

nature and society have some form of hierarchical structure. Recently, a network model that 

produces a network with a hierarchical structure was proposed [5, 7, 9]. According to this model, a 

network that has a hierarchical structure has the following two features: the average clustering 

coefficient is independent of the size of the network, and the average of the clustering coefficients 

of nodes with k edges follows the scaling law C(k) ~ k
-1

. Our analysis of the MKN determined that 

it has these two features (Fig. 5-1b, c). 

We next considered whether clinical practice also has small-world and scale-free properties. If 

the structure of the MKN reflects only that of language itself, its application to real medical 

services would be limited. However, if its structure affects the clinical behavior of medical 

professionals, its meaning would be significant. To answer this question, we applied network 

analysis to a database of “disease” in a hospital information system, which should reflect the 

clinical behavior of doctors. This database was comprised of clinical diagnoses that the doctors had 

entered during daily medical examinations. We constructed a network derived from this database 

(DDN, see Methods section). 

Table 5-1 shows that the DDN has the small-world property. Figure 5-2 shows that the DDN is a 

truncated, scale-free, hierarchical network. Furthermore, the average clustering coefficient and the 

power exponent of the DDN were 0.83 and 2.084, respectively, which are values similar to those of 

the MKN. Thus, both the DDN and the MKN have similar network structures. 
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Figure 5-1. Attributes of the MKN. (a) The complementary cumulative distribution (CCD) of degrees for the 

MKN, which is defined as , where p(j) is the probability of a node having degree j (i.e., the 

degree distribution). The exponent of the degree distribution is 2.045. This figure indicates that this degree 

distribution follows a truncated power law (scale-free). A truncated, scale-free distribution is a distribution that 

decays according to the power law p(k) ~ k
-α

 followed by a sharp cutoff. (b) The average of the clustering 

coefficients of nodes with k edges, C(k), which follows the power law C(k) ~ k
-ν
, where ν = 0.59 and 0.98 for 

small and large values of k, respectively. This means that, at least for large k, the clustering coefficient follows the 

scaling law C(k) ~ k
-1

. (c) The average clustering coefficient vs. the size of the network. We calculated the 

average clustering coefficients of partial networks we constructed by randomly eliminating several nodes from 

the MKN. This figure shows that the average clustering coefficient of the MKN is independent of the network 

size. These data demonstrate that the MKN has both properties of a hierarchical network. (Originally Fig. 1 in Ref. 

[1].) 
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Figure 5-2. Attributes of the DDN of Toyonaka Municipal Hospital. (a) The CCD distribution of the DDN. These 

data show that the DDN degree distribution follows a truncated power law; the exponent is 2.084, which is 

similar to that of the MKN. (b) The average of the clustering coefficients of nodes with k edges, C(k). As with the 

MKN, C(k) of the DDN follows the scaling law C(k) ~ k
-ν
, where ν = 1.03 for large k. (c) The average clustering 

coefficient vs. the size of network. The average clustering coefficient of the DDN is independent of the system 

size. These data indicate that the DDN has both properties of a hierarchical network, similar to the MKN. 

(Originally Fig. 2 in Ref. [1].) 
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Figure 5-3. Degree and frequency of diagnoses. (a) The CCD degree distribution of the partial network of the 

MKN, consisting of only those nodes that were classified as “diagnoses” and their edges. The diagnosis degree 

distribution follows a power law with an exponent of 2.10. (b) The CCD frequency distribution of internal 

medicine at Toyonaka Municipal Hospital. The diagnosis frequency distribution follows a power law with an 

exponent of 1.84. (Originally Fig. 3 in Ref. [1].) 

 

For the final analysis in this study, we asked whether the degree distribution of diagnoses 

(diagnosis degree distribution) of the MKN obeys a power law similar to the frequency distribution 

of clinical diagnoses (diagnosis frequency distribution). We extracted the nodes classified as 

“diagnoses” from the MKN and analyzed their degree distribution. We also analyzed the frequency 

distribution of internal medicine diagnoses from the hospital data. Both the diagnosis degree 

distribution of the MKN and the diagnosis frequency distribution of internal medicine followed 

truncated power laws with similar exponents of 2.10 and 1.84, respectively (Fig. 5-3). In fact, the 

diagnosis frequencies of not only internal medicine but also other departments followed truncated 

power laws with exponents ranging from 1.76 to 2.20 [44, 45]. These findings may have important 

implications. In a knowledge network, a node is a term. Consequently, a term with a large degree is 

connected to many other terms, the result being that it frequently appears in many sentences. In fact, 

according to an investigation of a general text, the frequency of word appearance in a text and the 

degree of the network constructed from that text are positively correlated [55]. However, in this 

study the frequency is not the frequency of diagnosis appearance in the text but that of diagnosis 

appearance in the hospital. This distinction between our study and the preceding investigation [55] 
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is important. 

Before presenting our conclusions, we describe the mathematical implications of the numerical 

analysis. First, having the small-world property implies that a network cannot be expressed by an 

Erdős-Rényi random graph. Table 5-1 shows that both the MKN and DDN have average degrees 

that are greater than log 𝑛. Therefore, if these networks are expressed by random graphs, then the 

random graphs are connected. The connected random graph has an average path length near 

log 𝑛

log 𝑛𝑝
=

log 𝑛

log〈𝑘〉
 (Sec. 2.3). Table 5-1 shows that the average path lengths of the MKN and the DDN 

are both near 
log 𝑛

log 𝑛𝑝
. These findings are compatible with the hypothesis that these networks are 

expressed by random graphs. However, these networks have far larger average clustering 

coefficients compared with the corresponding random networks. These findings are inconsistent 

with Theorem 2.5 and imply that these networks cannot be expressed by random graphs. Moreover, 

these networks exhibit scale-free behavior; their degree distributions exhibit a power law. However, 

the degree distribution of the random graph follows a Poisson distribution. Therefore, these 

findings are also inconsistent with the random graph. Thus, the numerical analysis shows that both 

the networks investigated in this study cannot be expressed by Erdős-Rényi random graphs.  

In addition to these facts, the networks investigated in this study have a hierarchical structure. 

The hierarchical structure has only an empirical definition and no mathematical definition. We 

therefore require mathematical definitions of hierarchical structure and the construction of a new 

mathematical model to investigate the MKN and DDN in detail.  

The conclusions of the numerical analysis are summarized as follows: 

1) The networks derived from medical knowledge and medical practice have multiple 

common features. The medical significance of this fact is described in the next section. 

2) These networks cannot be expressed by Erdős-Rényi random graphs. 

3) We require the concept of a complex network to investigate these networks. 

4) To express these networks, we require a new mathematical model.   
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6. Discussion 

As described above, the MKN displays small-world, scale-free, and hierarchical properties. The 

small-world property may help a clinician make the most appropriate diagnosis. In contrast, 

scale-free and hierarchical properties are related to the mechanism generating the MKN [4, 9]. 

Medical knowledge is always changing as it adapts to change or progress in social situations and 

medical science. New medical terms, such as new diagnoses, are constantly being added to medical 

knowledge, and definitions of diagnoses frequently vary. The addition of a new term corresponds to 

the addition of a new node in the MKN. This new node is attached to already existing nodes. In this 

example, the possibility of attachment to frequently used terms (nodes) is thought to be large. This 

means that preferential attachment is applied to the MKN. Medical knowledge intrinsically 

involves a complex hierarchical structure. Therefore, new nodes need to be added to the MKN 

without damaging the preexisting hierarchical structure. Thus, the MKN would develop and evolve 

under the following two principles: preferential attachment and preservation of the preexisting 

hierarchical structure. These two principles may give the MKN its precise structure. These results 

suggest that network analysis of medical texts may provide new insights into the genesis of medical 

knowledge. 

We showed that the diagnosis degree distribution of the MKN obeys a power law similar to the 

diagnosis frequency distribution of hospital data. Why do these two distributions resemble each 

other? The answer to this question may be that medical texts continuously reflect new knowledge 

in clinical practice. Therefore, a disease that occurs frequently in clinical practice is likely to be 

described many times in texts. Similarly, a disease that is mentioned frequently in texts is easy for a 

doctor to recall in clinical practice. The doctor obtains medical knowledge from texts or medical 

articles; therefore, the knowledge in the doctor’s mind would have a network structure similar to 

that of the texts. This mutual influence of medical knowledge and clinical practice may determine 

the similar structures and distributions. That is, the similar structures may emerge from this mutual 

influence. 
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It used to be thought that diagnosis frequency is an objective index existing in the world; 

however, given the similarity between the diagnosis frequency of a hospital and the diagnosis 

degree of the MKN, diagnosis frequency could be influenced by medical knowledge. Medical 

knowledge influences clinical practice, and this practice influences the frequency of diagnosis. 

Because doctors diagnose through clinical practice, clinical practice is thought to be the observation 

of disease. Therefore, the fact that clinical practice influences diagnosis frequency implies that 

diagnosis frequency is not an objective index but, to a certain degree, a subjective index, the value 

of which varies somewhat with the observation of disease. 
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7. Future research directions 

The world of diseases is remarkably complicated: diverse elements such as diagnoses, symptoms, 

and results of examinations are mutually connected, and these connections construct the integrated 

space (i.e., the MKN). Clarification of the structure of the MKN is an important problem in actual 

clinical practice. One attempt to clarify the connections among the elements is the classification of 

disease based on criteria like the ICD [2]. However, complex relations among much of the 

information make it difficult to clarify these connections by simple classification. Therefore, the 

mathematical analysis of the networks proposed in this study is needed to understand this structure. 

In this study, we evaluate a certain MKN constructed from a well-known textbook of internal 

medicine. There are many other textbooks of medicine, and these textbooks change with time. This 

means that a number of different MKNs can exist. To clarify the common and different properties 

among many MKNs is very important for understanding the change and evolution of medical 

service. Moreover, by comparing many different MKNs, we may reveal the relation between the 

MKN and medical results. 

Because mathematical analyses of MKNs have just begun, it is important to try new analysis 

techniques for networks. In particular, details of hierarchical and community structures [56, 57] 

may be useful for clinical practice. Detecting communities in the MKN will make it possible to 

create a new method for classifying diseases. Almost all methods of classifying diseases use some 

predefined criteria or multivariate statistics such as cluster analysis. However, from mathematical 

studies based on network analysis, a new classification method may emerge that reflects the 

complicated relationships among diverse clinical elements. Our preliminary study shows that the 

classification by detecting communities in a network from hospital database is different from that 

by cluster analysis. 

 Other than the analysis of the MKN, the network analysis of data in a hospital information 

system would be useful for hospital administration and management. A hospital information system 

involves data such as treatments, examinations, and nursing care for patients. By using the network 
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analysis of these data, we may classify patients according to clinical features.  

   Finally, we propose a new field in mathematical medicine
5
 that can be called “medical complex 

systemology”. We consider that medical service is a complex system composed of multiple 

interconnected elements such as patients, medical staff including doctors, medical knowledge, and 

the results of clinical practice (medical results). It is plausible that some features may emerge from 

the interactions among these elements. One example is the power law observed in the diagnosis 

frequency distribution. Dealing with medical service first requires expressing the relationships 

among these elements mathematically. In this study, we mathematically express medical knowledge 

by constructing networks (i.e., the MKN). Although the significance of medical knowledge in 

medical service is nothing special, we could not previously analyze the influence of medical 

knowledge on medical service. However, network analysis of the MKN brings forth the possibility 

to evaluate its influence on medical service. 

    We can also express medical practice (e.g., by the DDN). Medical results, such as diagnoses 

and outcomes from therapy, were previously expressed by piecemeal data. However, combining 

these data by a network analysis makes it possible to deal with them as one mathematical entity. As 

a result, we can analyze complex relations among diagnoses and therapies and their results, which 

is impossible when examining them individually. Moreover, we showed that the DDN and MKN 

share a common structure. The common structure between the medical results and the MKN is 

thought to be one that is emergent in the complex system. From this consideration, network 

analysis of the MKN and DDN, or “medical complex systemology”, is a promising tool for 

evaluating medical service.  

    Previously, we could not but understand medical service empirically. However, cooperation 

between mathematics and medicine may make it possible to comprehend and demonstrate intrinsic 

functions and structures in medical service. Moreover, we can construct an actual and reasonable 

                                            
5 Mathematical medicine is a new area of study that utilizes mathematical methods to understand 

medicine. 
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medical system and manage it appropriately on the basis of this comprehension. This mathematical 

approach and its methods are worthy of a new mathematical area. The Mathematics Subject 

Classification (MSC) formulated by the American Mathematical Society
6
 includes the category of 

game theory, economics, and social and behavioral sciences (code 91). We hope that the new 

division of mathematical medical service
7
, including the subdivision of “medical complex 

systemology”, will be added to this category and that many mathematical professionals in this area 

will work in medical faculties.  

For developing this new area, the following problems should be investigated: 

1) Clarifying the common and different properties among multiple MKNs. 

2) Clarifying how MKNs change. 

3) Clarifying the relationships between MKN and medical results. 

4) Clarifying the history of MKN change. 

5) Revealing the evolution of medical service. 

6) Describing the overall picture of medical service. 

By doing so, we may begin to answer the questions, “What is medical service?” and “What is 

medicine?”. 

  

                                            
6 http://www.ams.org/home/page 
7
 We also propose “mathematical medical service” as a new area of study that utilizes 

mathematical methods to understand medical service. 
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Appendix 1 Three types of plot  

  A. Rank-size plot 

  When data are arranged in order of size, a plot of sizes of quantities vs. their rank order is called 

a “rank-size” or “Zipf’s” plot. We can find many examples, such as rank orders of word 

frequencies, diagnosis frequencies, city sizes, and degree sizes of a network. Because “size” means 

“frequency” in word frequency and diagnosis frequency distributions, this plot is also called a 

“rank-frequency” plot. 

 In a power-law distribution, the size Sn of the quantity of the rank n is expressed by  

                                       𝑆𝑛 =
𝐴

𝑛𝜁
 ,                                                                                                         (𝐴1 − 1)  

where A is a constant. In this equation ζ is referred to as the Zipf exponent. 

 

 B. Size-frequency plot  

   This is a plot of frequencies vs. their size. That is, this plot is essentially the same as a 

probability density function p(x). In a word frequency distribution, the number of words that have 

the same incidence in a text is plotted against the incidence. It is the same in a diagnosis frequency 

distribution. 

  In a power-law distribution, the frequency f(x) of the quantity x is expressed by  

                                    𝑓(𝑥) =
𝐵

𝑥𝛼
   (𝑥 > 𝑥𝑚𝑖𝑛),                                                                                (𝐴1 − 2)   

where B is a constant.  

 

 C. CCD and complementary cumulative frequency plot  

  The CCD P(x) is defined as  

                                             𝑃(𝑥) = Pr(𝑋 ≥ 𝑥),                                                                                 (𝐴1 − 3) 

where 𝑥 > 𝑥𝑚𝑖𝑛  . 

 However, we frequently plot a histogram of data instead of the CCD. Because this histogram is 

essentially the same as the CCD, we plot the histogram instead of the CCD without notification. 

  In a power-law distribution, the CCD, P(x), of the quantity x is expressed by  

                                        𝑃(𝑥) = Pr(𝑋 ≥ 𝑥) = ∫ 𝑝(𝑡)𝑑𝑡
∞

𝑥

=
𝐷

𝑥𝛽
 ,                                                 (𝐴1 − 4) 

where D is a constant and obviously 𝛽 = 𝛼 − 1 . 

  

The power exponent α in eq. (A1-2) is also expressed by the Zipf exponent ζ as follows: 

                                                   𝛼 =
𝜁 + 1

𝜁
  .                                                                                         (𝐴1 − 5)  

This equation is derived in the following way. 
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Figure A1-1. Rank-size plot (Zipf plot). 

 

Figure A1-1 shows a rank-size plot of a power-law distribution. Let us suppose that Fn is a 

continuous function of n. Then the size S of the rank n element is expressed as  

                                      𝑆 =
𝐴

𝑛𝜁
= 𝑠(𝑛) .                                                                                              (𝐴1 − 6) 

 

Let the number of elements that exist between S and S+dS be |dn|, then 

                                    |𝑑𝑛| = |𝑠−1(𝑆 + 𝑑𝑆) − 𝑠−1(𝑆)| .                                                                  (𝐴1 − 7) 

Differentiating eq. (A1-5) with respect to n yields 

                                         𝑑𝑆 = −𝜁
𝐴

𝑛𝜁+1
𝑑𝑛 .                                                                                        (𝐴1 − 8) 

That is, 

                                         |𝑑𝑛| =
𝑛𝜁+1

𝜁𝐴
|𝑑𝑆| .                                                                                         (𝐴1 − 9) 

From eq. (A1-5), we obtain  

                                           𝑛 = (
𝐴

𝑆
)

1
𝜁
.                                                                                                   (𝐴1 − 10) 
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Substituting eq. (A1-9) into eq. (A1-8) gives  

                                           |𝑑𝑛| =
𝐴
1
𝜁

𝜁
|𝑑𝑆|

1

𝑆
𝜁+1
𝜁

=
𝐵

𝑆
𝜁+1
𝜁

  ,                                                               (𝐴1 − 11) 

where 𝐵 =
𝐴
1
𝜁

𝜁
|𝑑𝑆| is a constant. In the size-frequency plot, |dn| denotes the frequency f of the size 

S. 

Then  

                                                         𝑓 = |𝑑𝑛| =
𝐵

𝑆
𝜁+1
𝜁

 .                                                                    (𝐴1 − 12) 

 Comparing eq. (A1-12) to eq. (A1-2), we obtain 

         

  𝛼 =
𝜁 + 1

𝜁
 . 
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Appendix 2 Estimating the power exponent by regression analysis 

  

There are three types of plots that can express a set of data: rank-size plot, size-frequency plot, 

and complementary cumulative frequency plot (or CCD). If the data follow a power law, on these 

three types of plots with logarithmic scales, the data appear along a straight line, and we can 

estimate the power exponent 𝛼 by regression analysis (Appendix 1). Although all three plots are 

expected to yield the same value of 𝛼, in practical use the CCD leads to the most accurate value. 

Figure A2-1 shows the distribution of the degree of diagnosis (see Fig. 5-3a) on the three types of 

plots. Table A2-1 presents the values of the slopes and α derived from regression analysis. These 

results show that size-frequency plots have large variation, and α derived from this plot is estimated 

to be less than from the other plots. In fact, Newman [30] showed, by numerical analysis, that the 

estimate from the size-frequency plot is less accurate than from the other plots. 

 

 

 

Figure A2-1. Three types of plots of the degree distribution. 
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Table A2-1. Results of regression analyses for three types of plots. 

 Slope R
2
 Power exponent α derived from slope 

Rank-size plot  0.96±0.003 0.94 2.001 

Size-frequency plot  1.23±0.04 0.76 1.23 

CCD 1.29±0.018 0.95 2.29 

Maximum likelihood – − 2.10 

R
2
 is the coefficient of determination in linear regression analysis used to derive the slopes. The slopes are 

derived from linear regression analysis, and the power exponents are derived from the slopes (Appendix 1).  
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Appendix 3 Maximum likelihood estimate of the power exponent [30, 31] 

  Let p(x) be the power-law distribution 

                                                     𝑝(𝑥) =
𝐶

𝑥𝛼
         (𝑥 > 𝑥𝑚𝑖𝑛),                                                           (𝐴3 − 1) 

where C is a constant. The constant C is given by  

                                                     1 = ∫
𝐶

𝑥𝛼

∞

𝑥𝑚𝑖𝑛

𝑑𝑥 =
𝐶

1 − 𝛼
[
1

𝑥𝛼−1
]
𝑥𝑚𝑖𝑛

∞

 .                                        (𝐴3 − 2) 

If 𝛼 > 1, then  

                                                     𝐶 = (𝛼 − 1)𝑥𝑚𝑖𝑛
𝛼−1 .                                                                            (𝐴3 − 3) 

Therefore 

                                                    𝑝(𝑥) =
𝛼 − 1

𝑥𝑚𝑖𝑛
(
𝑥

𝑥𝑚𝑖𝑛
)
−𝛼

.                                                      (𝐴3 − 4)  

 

Given a set of n values xi ≥ 𝑥𝑚𝑖𝑛 that are supposed to follow a power-law distribution with a 

power exponent α, the likelihood of the data set is defined as follows: 

                                        𝑃(𝑥|𝛼) =∏𝑝(𝑥𝑖)

𝑛

𝑖=1

=∏
𝛼 − 1

𝑥𝑚𝑖𝑛
(
𝑥𝑖
𝑥𝑚𝑖𝑛

)
−𝛼

𝑛

𝑖=1

 .                                        (𝐴3 − 5) 

The value of α that maximizes this function is the maximum likelihood estimate of α. Because this 

value is equal to that which maximizes the logarithm of 𝑃(𝑥|𝛼), we can calculate the most likely 

value of α by maximizing the log likelihood. Setting 𝜕ln 𝑃(𝑥|𝛼) 𝜕𝛼 = 0⁄ , we obtain the maximum 

likelihood estimate 

                                         𝛼̂ = 1 + 𝑛 [∑ln
𝑥𝑖
𝑥𝑚𝑖𝑛

𝑛

𝑖=1

]

−1

   .                                                                      (A3 − 6) 

The standard error of 𝛼̂ is estimated as follows [31]: 

                                         𝜎 =
𝛼̂ − 1

√𝑛
+ O(1 𝑛⁄ ) .                                                                                  (𝐴3 − 7) 

 

   

 


