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Wc found a chaotic pulsation in a finger's capillary vessels in both normal subjects and psychiatric
patients, as well as cardiac chaos. A proofof chaos was made by the reconstruction of the dynamics in
phase space and the calculation of the Lyapunov exponents. From the aspect of chaotic information
processing, we give a measure of the information storagecapacity of the observed chaos. We also found
a difference in the topology of capillary and cardiac chaos, and a difference in their dependence on the
subject's conditions.

1. Introduction

The recent development of dynamical systems' theory
enables us to interpret systematically complex behav
iors in physical and even in biological systems. In
particular, the technique of embedding[Packardet al.,
1980; Takens, 1981] of observed data into finite or
infinite dynamical systems may force a change in the
analysis r random motions. Namely, before the
development of such a technique, one tried to calculate
average, standard deviation and, if necessary, higher
moments of an observed random variable as well as a
probability distribution function. Whereas, in the
present, one may try to analyze random motions as an
entity, not as a decomposed one as above, by extract
ing an implicated order in the form of a nonlinear
smooth manifold, i.e., geometry [Campbell et al„
1987].

3y the embedding technique, the presence of deter
ministic chaos has been clarified in many complex
systems. In particular, evidence of deterministic chaos

in human brain and heart has been obtained in several

experiments by adopting this technique to the data
of electro-encephalogram (E.E.G.) [Babloyantz, 1986;
Layne et al, 1986; Rapp et al., 1989] and electro
cardiogram (E.C.G.) [Babloyantz & Destexhe, 1988;
Goldberger et al, 1988].

In this paper, we present another human chaos: the

capillary chaos. Furthermore, recent studies on appli
cations of dynamical systems' theory to biological
systems raise expectations of the discovery of novel
indications for the process of recovery of health. Such
appropriate indications could be utilized in care and
cure [Rapp, 1986]. It is worth studying the correlation
of the peripheral data with controlled conditions by
reconstructing the dynamics of the peripheral, since
the peripheral activities vary easily with changes of
mental or physical conditions.

One of the crucial problems for human brain
research is how to get an indication for the recovery of
mental health, i.-?. a care and rehabilitation problem.
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The motivation of the present study is to find a good
indicator for the rehabilitation of a psychiatric patient.

This also leads to a study of the peripheral. If the
patient could be aware of his current condition by

means ofan appropriate indicator that is simple and in

particular, appears as a visual image, such an indicator
would be available for use in the process of healing and

rehabilitation. This idea could be generally applied to

daily health-care.
Motivated by this fundamental idea of self-care, we

recorded a time series of the pulsation of capillary
vessels, and we found chaotic pulsation in a finger's
capillary vessels in both normal subjects and psychi
atric patients. We observed the geometry of an attrac-
tor constructed from the time series of a single
variable, i.e., the peripheral blood pressure, and we
also calculated the Lyapunov exponents from the
experimental data, which can express the degree of
orbital instability. The results proved deterministic
chaos. Forms of the chaos depended on the mental or
physical conditions of the subjects.

We also studied the ability of the observed chaos in
detecting information fed from outside. This ability
was measured by mutual information.

Furthermore, cardiac activities, i.e., the beating ofthe
heart simultaneously measured by electro-cardiography
with a pulsation of the capillary vessels also exhibited
deterministic chaos, whose forms were, on the contrary,
almost independent of the subject's condition. This
leads us to propose a hypothesis on autonomic nerve
innervation.

In Sec. 2 and Sec. 3, we explain the experimental
system and the reconstruction technique, respectively.
In Sec. 4, we give the computation results of the
Lyapunov exponents, adopting the Wolf method [Wolf
et al, 1985]. The condition dependence of the capil
lary and cardiacchaos is given in Sec. 5. A measure for
information processing of the observed chaos is given
in Sec. 6. Section 7 is devoted to discussions and

outlook, with some hypotheses.

2. Experimental System

The data were recorded from the surface of the bulb of

the left forefinger by detecting light reflected by the
vascular tissues of the infrared ray emitted from the
Light Emitting Diode (LED). The setup of the exper
iment is shown in Fig. 1. The peripheral blood pres
sure was measured by the photo-coupler attached to
the inner surface of the cuff which fixed the measure
ment place. The light with wavelength 940 nm emitted
from the infrared LED was reflected from the vascular
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Fig. 1. Experimental setup. A detailed explanation is found in the

text.

tissues and detected by the photo-transistor. Detected
light intensity which was transformed to an electric

signal by the photo-transistor was stored in an engi
neering work station through the A/D converter (after

being amplified by 10,000 times) where we measured

the data with a sampling frequency of 200 Hz with 12

bit resolution.

A forefinger of the left hand was consistently chosen
for all the subjects. In the present experimental system,
one can detect almost the same output for the other
seven fingers, but the thumbs exhibit a slightly dif
ferent data set.

If the finger cannot move, a variable part in the data
is reasonably derived from the motion of the blood
flow. It is, however, questionable if we could remove
the effect of the motion of the bulb. To check this,
another measurement was made, where the data were
taken on the surface of the nail. The result was the

same, except for a slight decrease of the output
intensity. Though we cannot determine the precise
spatial extension of the measurement place, it will be
a plausible estimation that it is within a few millimeter
square. Thus, the apparatus can measure the time
series of the collective pulsation of the capillary
vessels, namely, the peripheral blood pressure. The
data were taken from 20 normal subjects and 15
psychiatric patients.

3. Reconstructing Dynamics

A typical time series is shown in Fig. 2(a), An oscilla
tion with a period of about 1 second is dominant,
which is a reflection of the cardiac activity. In a long
time observation (about 100 sec. in the present case),
however, both amplitude and period fluctuate over a
rather wide range. We reconstructed the attractor from
these experimental data, by adopting the method of
embedding.

For a variable x(t) denoting a time series of the peri
pheral blood pressure, we take new variables y(t) =
x(t +t), z(t) =x(t + 2t), w(t) =x(t + 3t), ..., wherez is
the order of the correlation time. In the embedding
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into three-dimensional phase space [Fig. 2(bl)], we ob
served some complicated structure ofthe reconstructed

attractor, but could not obtain a consistent topology
with possiblevector fields ofthree-dimensional dissipa-
tive dynamical systems. This indicates that at least the

fourth dimension is needed to satisfy the topological
consistency, so we tried to make the embedding into
four-dimensional phasespace[x(t), y(t), z(t), w(t)].We
analyzed qualitatively the geometry of the attractor
projected into three-dimensional phase space [x'(t),
y'{t), z'(t)], by taking the parallel projection [Miyazaki,
1989]of a supposed four-dimensional object.

The projection is given by Eq. (1).

x'{t) = n2x{t)IA-nxy{t)IA ,

y'{t) =nx n3x{t)IAB + n2n3y(t)/AB -Az(t)/B , (1)

z'{t) =w,n4x(t)/B + n2n4y(t)/B + n3n4z{t)IB-Bw(t) ,

where A={n\+nf)1/2, 5 =(1-«J)1/2, and n=(n„ n2,
«3, n4) is a unit vector representing the direction of
sight. The fourth axis w was rotated to coincide with

the direction of that unit vector. A typical phase
portrait is shown in Fig. 2(b2)-(b4).

Figure. 2(c) shows a possible model for the geometry
of the attractor. This is inferred by varying the
direction of sight n and observing the shape of the
attractor on the three-dimensional Poincare maps:
three-dimensional solid torus with a screw type of
structure of torus as a part. If one tries to make a
model with topological dimension 2, two singularities
appear. To remove singularities, at least one more
topological dimension is needed. The dotted line with
arrows in the model indicates a part of the orbits. It is
reasonable to think of the three-dimensional torus as

the ground state of the peripheral blood pressure. This
is because the main dynamical components of the
peripheral blood pressure will be the three distinct
oscillations: the heart rhythm, the respiration cycle,
and the fluctuation of the blood pressure. A similar
model in the four-dimensional embedding has been
also proposed in the local E.E.G. of mammalian brain
[Freeman, 1989; Yao & Freeman, 1990].

4. A Pragmatic Measure of Chaos: The
Lyapunov Exponent

We did not succeed in determining a dimension of the
attractor (e.g., the correlation dimension [Grassberger
& Procaccia, 1983(a) & (b)]) directly from the exper
imental data. Since the observed attractors are very

nonuniform, conventional methods for the measure

ment of the attractor's dimension such as the Grass-

berger-Proccacia method are inappropriate for our
attractors. In general, even when the overall attractor is

nonuniform, the Grassberger-Proccacia method is
applicable to the Poincare sections if uniformity of
invariant density on the sections is presumed [Schaffer
et al, 1988]. In the present case, however, it was prac
tically impossible, because of the difficulty in recording
indefinitely many data of the peripheralblood pressure,
assuring its stationarity. The maximum number ofdata
we could record was about 20,000 sampling points
by the measurement with 5 msec sampling time. This
number is too small to assure the invariance of the

probability density oforbits on three-dimensional Poin
care sections. Furthermore, the correlation dimension

may also become fractional in the case ofnon- chaos, for
instance, colored noise, stochastic process like Levy
flight, etc.

The Lyapunov exponent is simply a practical mea
sure of deterministic chaos. Actually, it is unable to
decisively determine whether the data are chaotic or
not. Furthermore, the algorithms proposed so far for

the estimation of the Lyapunov exponents also have

decisive weak points such as the impossibility of
discriminating chaos and noise, and the possibility of
the appearance of spurious positive exponents when
the embedding dimension is much higher than the
system's dimension [Eckmann et al, 1986]. The latter
becomes destructive if the system's dimension is not
known in advance. Actually, this is decisive in the case
of highly nonuniform attractors, in which the precise
estimation of the correlation dimension is hopeless,
such as in the present case.

These difficulties appear, particularly, in the estima
tion of exponents other than the largest one. The
estimation of the largest exponent is relatively reliable,
since the arbitrarily chosen vector quickly tends to the
direction of the unstable manifold. This is a reason

why we have taken here the Lyapunov exponent as a
practical measure of deterministic chaos.

The calculation of the Lyapunov exponents from the
experimental data showed the presence of a positive
exponent. The results are summarized in Table 1. We
calculated the Lyapunov exponents with the Wolf
method (Fig. 3). The number of the present data is
greater than, but close to the theoretical lower bound
of the number of the data needed to estimate a correct

value of the Lyapunov exponent in the case of four-
dimensional embedding.



:*BS|

Table 1. The first and the second Lyapunov exponents measured in
bits/50 msec (50 msec is an evolution time) for various conditions
with the method explained in the text. The calculation failed in
determining the second Lyapunov exponent in the cardiac data. The
reason may lie in the possibility of selecting 'nearby' data which
maybe located apart from each other along a fiducial trajectory, since
the cardiac chaos has a knotted portion.

Subject State Al XI

HT resting 0.56 ±0.013 0.14 ±0.006
HT reading

(a magazine which has
interest for the subject)

0.40 ±0.009 0.12 ±0.006

KM resting 0.44 ±0.008 0.18 ±0.009
KM reading

(a math, text which has
no interest for the subject)

0.41 ±0.018 0.12 ±0.070

KM reading
(a story comic which has
interest for the subject)

0.48 ±0.026 0.24 ±0.015

KM looking
(a colorful animal's picture)

0.40 ±0.015 0.07 ±0.02

SS before medical treatment 0.37 ±0.021 0.27 ±0.073
SS under medical treatment 0.48 ±0.004 0.14±0.017
SS after medical treatment 0.41 ±0.006 0.13 ±0.029

KM cardiac data 0.13±0.019
-

The following procedures were used for the recorded
data embedded in a four-dimensional dynamical sys
tem. As seen in Fig. 3(a), the largest Lyapunov expo
nent Xx is computed as the average growth rate of
length elements. The growth rate is measured for
vectors not parallel to the direction of the orbits.

Throughout the computation, a fixed evolution time T
was used. A new vector is adopted for the next
evolution, when its tip enters the bounded region of
the four-dimensional cone with the maximum angle 0.

The boundaries of the cone, Lmin and Lmax are
needed for a correct estimation of the exponents. If we
take too small a length, we cannot obtain the conver
gence of the exponents because the number of data
allowed is too small. If we take too large a length, we
also cannot obtain a correct exponent for a fixed T,
because the evolved vector can be a result of having
been folded many times. These values cannot be
predetermined, so many trials are necessary to obtain
suitable ones. The maximum angle limit is also
necessary to avoid too-skewed vectors giving rise to an
incorrect estimation.

After calculating with various values of Lrain, Lmax
and 6, it was concludedthat, for our system, the set of
values Lmin =3% and Z,max =5% of the size of the
attractors, and 0=18° can give fast convergence.

If appropriate data are not found, the vector to be
evolved is dropped, and we turn back one step in the
procedure to choose another. If appropriate data are

SWSSSSPWBWp
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(a)

Fig. 3. Theprocedure of theWolfmethod for (a) the first Lyapunov
exponent,and (b) the second Lyapunov exponent. Explanations are
given in the text.

not found even with this procedure, we reset a fiducial
point on the trajectory. If this reset is needed many
times, we judge that such a data-set cannot give a
correct calculation of the Lyapunov exponents. In all
data-sets we calculated, except for the cardiac data, the
number of such resets was at most 1% of the total
number of evolutions. This gives rise to thecovering of
at least six periods on average for each fiducial
trajectory which is sufficient for a correct estimation of
the Lyapunov exponents. Since parts of the cardiac
trajectories show a fast variation, it was difficult, in the
estimation, to keep one fiducial trajectory for a long
time. We needed a 10-20% ratio of reset, so the
estimated value might not show the correct Lyapunov
exponent and it should rather be considered as the
average local divergence rate.

As seen in Fig. 3(b), kx+X2 is computed as the
average growth rate of area elements. The procedure is
analogous to the computation of A,. Two points are
chosen beside the fiducial trajectory. For the length of
the corresponding two vectors, the same Lmin and Lmax
as in Fig. 3(a)were adopted. Too-skewed areasare also
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ignored by adopting the allowed angles 0=s 18° be
tween an evolved area and a renewed area. For each

evolution, the Gram-Schmidt procedure is used for

keeping orthonormality.
In order to check the correctness of the above algo

rithm, we calculated the first and the second Lyapunov

exponents in the Lorenz system. We obtained the same
values as those obtained by the conventional method of
Shimada & Nagashima [1979]. In particular, the second
exponent was zero up to the second or the third digit
(0.003 ±0.0097).

If orbits are sufficiently embedded into four-dimen
sional phase space, it is concluded that the third
exponent A3 should vanish and the fourth exponent X4
should take a large negative value, i.e., X4< - (Xx + X2).
Moreover, in general, if the embedding dimension is
lower than the dimension of the attractor, the degree of
orbital instability would seemingly decrease. This
situation could give a lower value than the actual
Lyapunov exponent. Thus, the calculated exponents
give the lower bounds. These considerations show that
the pulsation ofthe capillary vessel can be described by
deterministic chaos. The positive second exponent
indicates the correctness of our assumption that the
attractor should be described in at least a four-
dimensional dynamical system.

We also calculated the empirical Lyapunov spectrum
with other methods, namely, Sano-Sawada [1985] and
Eckmann-Ruelle [1986] methods, increasing the em
bedding dimension. The largest Lyapunov exponent
gives the same valueas in Table 1 within the precision.
However, it was quite difficult to determine whether
the second exponent is zero or positive. Both Sano-
Sawada and Eckmann-Ruelle methods are convenient
for obtaining the whole spectrum simultaneously. It is,
however, still questionable whether the tangent space
is correctly spanned. In particular, the assumption that
the vectors in the sphere are uniformly distributed is
highly questionable in our system. An elaborated
algorithm will be published elsewhere[Barna & Tsuda,
1992].

5. Condition Dependence of Observed
Chaos in the Cardiovascular System

For various mental or physical conditions of the sub
jects (resting, calculating simple arithmetic, drinking,
exhaustion, unrest, sleeping, reading, looking at pic
tures, etc. for normal subjects, and resting for different
psychiatric patients), we reconstructed the attractors
from recorded data, and also calculated the Lyapunov
exponents. Theforms ofchaos, thegeometry and size of

trajectories as well as the Lyapunov exponents were

rather sensitive to those conditions, possessing basal
forms specific to the individual [Fig. 4(a),(b)]. Under
the same condition for a subject, the successive mea
surements assured invariance of the forms of chaos.

Figures 5(a)&(b) show the capillary chaos in patients
of senile dementia and of schizophrenia, respectively.
Features of chaos in Fig. 5(a) are typical for the
patients of senile dementia. However, we should stress
that none of the features in Fig. 5(b) show a specificity
of schizophrenic patients. A similar attractor can
appear also in normal subjects when they are out of
(physical) condition.

Figures 5(c)&(d) are the data from premature new
born babies in a Neonatal Intensive Care Unit (NICU):
(c) a newborn in an incubator, and (d) a newborn out of
the incubator, respectively. The data in (c) show zero as
the largest Lyapunov exponent, and in (d) the largest
Lyapunov exponent is near zero. Both data have not
much structure. However, it should be noted that
a newborn in the incubator has even less structure than

a newborn out of the incubator.

Thus, the features of the chaotic attractor reflect the
degree of physical or mental activity (health) or the
degree of maturity. This indicates that the feature
change can also be an appropriate indicator in the
process of the care of mental or physical diseases.

Actually, we applied our method to the rehabilita
tion process of a neurotic patient in order to check
whether or not the chaotic representation obtained
here can be utilized as an indicator of the degree of
recovery of mental health. Figure 6 shows recon
structed chaos at respective stages before, under, and
after treatment. A conspicuous disorder in hospitaliza
tion [Fig. 6(b), see also Table 1] can be considered to
stem from both a self-discord of the patient and drugs
for medical treatment. After recovering mental health
[Fig. 6(c)] the dimension of the attractor is seemingly
reduced, and there appears a complicated screw-type
structure which was not so conspicuous before medical
treatment [Fig. 6(a)]. It should also be emphasized that
the size of the attractor after the recovery becomes
greater than that before treatment.

To study whether the chaos observed in the capillary
vessels stems from cardiac oscillation, we made simul
taneous measurements of the beating of the heart. A
long-time recording of that beating in terms of the
V4-induction of electrocardiograph also exhibited de
terministic chaos in a subject without any heart disease
(see also [Babloyantz & Destexhe, 1988; Goldberger
etal, 1988]), but its topology differed very much from
that of the chaos of the capillary vessels (see Fig. 7).
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(a)

... va -\lm -,- IWill •.- WU -l&UU -»- 5CU

(b)

Fig. 4. (a) A condition-dependence of the geometry and the size of the attractor for a normal subject K. M. From the left,
resting, reading (not interesting for the subject), reading a story comic (interesting for the subject), looking (colorful picture of
an animal). The data were recorded successively for an hour. The same direction of sight as in Fig. 2(b2). The same scales of
x', y', and z' for all figures: - 588< x' < 837, - 848< y' < 786, and - 984< z' < 518. (b) A condition-dependence for a
normal subject T. T. From the left, resting, exhausted, drinking (a bit of alcohol).

Moreover, the topology of the cardiac chaos is insen
sitive to subjects and their conditions if heart diseases
such as myocardial infarction, atrial fibrillation, and
irregular pulse are not recognized.

6. Information Processing by the Capillary
Chaos

The cardiovascular system is an information channel
[Mandell, 1987] as well as the cortical nervous system.
In particular, the peripheral system is considered as a
control system correlating with the nervous system.
Therefore, it is worth studying the information capac
ity of the observed chaos, especially its ability for the
transmission of information fed from outside.

In order to study this on the experimental data, we
propose a simple algorithm for the computation of
mutual information between the experimental data
and the other dynamical system.

Let {\(n)} denote the nth orbital point in the
.V/-dimensional vector space. The embedding of exper

imental data into M-dimension allows this assignment.
Let {y(n)} denote the nth orbital point of the other data
set in the A/'-dimensional vector space. A set {y(n)} is
supposed to have been computed in numerical simu

lation of the dynamical system, or obtained in another

experiment. Both sets {x(n)} and {y(/?)} are numbered
in the order of evolution.

We consider the following type of forced system:

x(r+i) = f(x(0) + cy(o •

y(/+l) = h(y(0) ,
(2)

where C is a matrix of coupling constants, whose ele
ments are expressed by c«, i - 1,..., M,j = 1,..., M'.

Suppose that the solutions achieved in the case of
Cy =0 for all i and j give the data sets {x(n)} and (y(«)}
(1 < n ^ TV). Our aim is to construct a time series \'(n)
which closely resembles a solution of Eq. (2). Choose
x(l) for x'(l). In each step we compute the exact
evolution from \'(n) using the term f(x'(«)) + Cy(n).
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(a)
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Fig. 5. (a) Patient M. S. with senile dementia, (b) Patient H. M. with schizophrenia, (c) A premature new born in an incubator in NICU.
(d) A premature new born out of incubator in NICU.

However, since the effect of f is known only for the
elements of the data set {x(n)}, we substitute the
nearest element of this set for the exact evolution.

The procedures can be written as follows:

x'(l)-x(l) ,

\'{n+ \) = \(k) .

where x(A:) satisfies

||f(x'(/0) +Cy(/7)-x(/c)||= iminv||f(x'(«)) +Cy(/0-x(/)|| .

Divide both {\'(n)} and {y(n)} into m cells. Find
the probability /?,•(/' = 1,2,..., m) of (x'(tt)} entering

(3) in the Ah cell, and the conditional probability pf
(i- 1,.. ,,m, j= 1,.. . ,m) that {x'(«)} enters in the
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r

-1000 -x- 500 -1000 -y- 500

Fig. 6. Chaos observed at three stages of aneurotic patient S. S. (a) before treatment, (b) under treatment, (c) after treatment The same
d.recuon of s.ght as mF,g 2(b2). The scales of ,'. ,<• and _-': -773 <X> <580. -957 <y<552, -904 <J< 438. In both case bfor
and after treatment, the s.ze and the geometry of the attractor were invariant in successive measurements, whereas they varied und

/'th cell at time k+t under the condition of {y(//)}
entering in the7th cell at time k. Then, one can define
the time dependent mutual information [Matsumolo
& Tsuda, 1985, 1987, 1988] as follows:

w m m

Iit) =- XPi log Pi +X L PjPji ^g P
/ = 1 1- 1 1 - 1

(4)

This quantity indicates a time course of shared infor
mation between two data sets {x'(n)} and {y(n)}, in other
words, information transmitted from {y(n)} to {x'(n)},
since the coupling is unidirectional in the present case.

In order to see the time course of information
transmission in the simplest case, let us suppose that
cu =cSkh where c is a constant and the probability /?,-
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-100 -x- 100 -100 -y- 100

Fig. 7. A phase portrait of the cardiac oscillation measured by
V4-induction for the subject K. M. The forms of observed chaos arc
invariant for the conditions referred to in Fig. 4a. The same
direction of sight as in Fig. 2 (b2). The scales: -93<.v'<38.
- 93 < y' < 32, and - 82 < z' < 49.

and pf are calculated in terms of only the first
component of both {x'(n)} and {y(n)}. To see the
relevance of the algorithm Eq. (3), we calculated the
mutual information, Eq. (4), in the Lorenz chaos
forced by another Lorenz chaos in two ways, i.e., by
means of the above algorithm and by the equations of
motion. The computed system is given as follows:

dxxldt = - (7, A', + (7, a2 + cyx ,

dx2ldt = -x2 + r, a, - x, x3 ,

dx3ldt= -bxX3 +XxX2 ,

dyxldt = - o2yx + a2y2 ,

dy2ldt= -y2 + r2y{ -yxy3 ,

dy3ldt = -b2y3 +yiy2 ,

where ax=a2=\0. r, =r2 =28, bx=b2 =8/3.
The resultsare shown in Fig. 8, where one can seethe

merit of the algorithm. The reason why /(/) is almost
invariant for a change of the coupling constant is that
the orbits are simply renumbered and new values can
never be added by forcing. In spite of this weak point
in the algorithm, as is seen in Fig. 8, several cases of
the coupling strength give even quantitatively good
correspondence. Thus, one can adopt our algorithm as
the first approximation for computing the information

(5)

transmission to the experimental data from a known

dynamical system or from other experimental data.
Actually, we calculated the mutual information /(/)

for the capillary chaotic data which was forced by the
Lorenz chaos. The capillary chaos driven by the
Lorenz chaos is shown in Fig. 9(a). By this calculation,
one can see the transmitted information to the capil
lary chaos from the Lorenz chaos. Thus, this quantity
can be used to discriminate the ability of the capillary
chaos to receive information fed from outside. The

results are shown in Fig. 9(b).
The choice of the Lorenz chaos is not essential for

seeing the information processing ability of the capil
lary chaos. One can choose other chaotic systems or
quasi-random noise generators as a driving system.
The calculated information quantity indicates a com
munication ability of the capillary chaos with the
Lorenz chaos. By the present algorithm, one can know,
in general, the information storage capacity of any
experimental data. Furthermore, by applying this
algorithm to the various kinds of data sets, it will be
possible to classify them in terms of their communi
cation ability.

7. Discussions and Outlook

Two crucial hypotheses arise. The cardiovascular sys
tems exhibited deterministic chaos in their healthy
conditions. This implies that at least these systems
among organs innervated by the autonomic nervous
system need chaos to achieve a dynamic intelligent
control [Tsuda et al, 1987; Tsuda, 1991a&b]: here
chaos bufferunexpected stimuli in terms of its inherent
grammar. Relating to this notion, the definition of
homeostasis might need to be corrected [Goldberger
etai, 1988].

We propose a notion of 'homeochaotic' state (or a
state of 'homeochaos') in the sense that the autonomic
control system can acquire intelligence and flexibility
by generating deterministic chaos in its normal states.
This notion was derived from the observation of chaos
in the cardiovascular system reported here, but it could
be easily extended to other biological systems.

A similar notion has been recently proposed by-
several researchers. Ikegami and Kaneko [1991] intro
duced the notion of 'homeochaotic symbiotic' net
work, based on the result of their symbiotic network
model. Iberal [1978] proposed the notion of 'homeo-
kinesis' to capture the dynamic regulations and inter
actions essential for the self-maintenance of biological
organisms. In a similar sense, Rossler and Hudson
[1990] emphasized the significance of a metabolic
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Fig. 8. Mutual information between Lorenz systems (log-log plot), (a) A time scries of mutual information computed from the equations

[Eq. (5)]. (b) A time series of mutual information computed from the algorithm, Eq. (3).

(b)

logl(t)

log t

Fig. 9. (a)Three-dimensional phase portrait in four-dimensional embedding ofthecapillary chaos (H. T. reading) forced by the Lorenz chaos.
Comparewith Fig. 2(b). (b) Mutual information between capillary chaos and Lorenz chaos (log-log plot). Four casesare shown. From above,
the data from the patient M. S. with senile dementia, the neurotic patient S. S. under treatment, the normal subject H. T. while reading, and
H. T. while resting.
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chaos in living systems. To denote the dynamic state
achieved by chaos in the metabolic control systems,
they used the notion of 'chaotic maintenance'.

The second hypothesis is derived from the difference
of the condition-sensitivity between chaos in the
capillary vessels and those in the heart. Both the
systems have been classified into the same category for
autonomic nerve innervation. According to our obser
vations, however, it is plausible to think that there are
at least two kinds ofgates in the spinal cord. One is the
gate with plasticity for innervating organs sensitive to
mental .or physical conditions, and the other is con
trolled rather automatically for innervating organs
insensitive to those conditions. Only the latter should
be called the autonomic nervous systems, whereas the
former might be addressed as chaotically modulated
autonomic nervous systems.
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